scholarly journals AI-Based Quantification of Fitness Activities Using Smartphones

2022 ◽  
Vol 14 (2) ◽  
pp. 690
Author(s):  
Junhui Huang ◽  
Sakdirat Kaewunruen ◽  
Jingzhiyuan Ning

To encourage more active activities that have the potential to significantly reduce the risk of people’s health, we aim to develop an AI-based mobile app to identify four gym activities accurately: ascending, cycling, elliptical, and running. To save computational cost, the present study deals with the dilemma of the performance provided by only a phone-based accelerometer since a wide range of activity recognition projects used more than one sensor. To attain this goal, we derived 1200 min of on-body data from 10 subjects using their phone-based accelerometers. Subsequently, three subtasks have been performed to optimize the performances of the K-nearest neighbors (KNN), Support Vector Machine (SVM), Shallow Neural Network (SNN), and Deep Neural Network (DNN): (1) During the process of the raw data converted to a 38-handcrafted feature dataset, different window sizes are used, and a comparative analysis is conducted to identify the optimal one; (2) principal component analysis (PCA) is adopted to extract the most dominant information from the 38-feature dataset described to a simpler and smaller size representation providing the benefit of ease of interpreting leading to high accuracy for the models; (3) with the optimal window size and the transformed dataset, the hyper-parameters of each model are tuned to optimal inferring that DNN outperforms the rest three with a testing accuracy of 0.974. This development can be further implemented in Apps Store to enhance public usage so that active physical human activities can be promoted to enhance good health and wellbeing in accordance with United Nation’s sustainable development goals.

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2506 ◽  
Author(s):  
Yunfeng Chen ◽  
Yue Chen ◽  
Xuping Feng ◽  
Xufeng Yang ◽  
Jinnuo Zhang ◽  
...  

The feasibility of using the fourier transform infrared (FTIR) spectroscopic technique with a stacked sparse auto-encoder (SSAE) to identify orchid varieties was studied. Spectral data of 13 orchids varieties covering the spectral range of 4000–550 cm−1 were acquired to establish discriminant models and to select optimal spectral variables. K nearest neighbors (KNN), support vector machine (SVM), and SSAE models were built using full spectra. The SSAE model performed better than the KNN and SVM models and obtained a classification accuracy 99.4% in the calibration set and 97.9% in the prediction set. Then, three algorithms, principal component analysis loading (PCA-loading), competitive adaptive reweighted sampling (CARS), and stacked sparse auto-encoder guided backward (SSAE-GB), were used to select 39, 300, and 38 optimal wavenumbers, respectively. The KNN and SVM models were built based on optimal wavenumbers. Most of the optimal wavenumbers-based models performed slightly better than the all wavenumbers-based models. The performance of the SSAE-GB was better than the other two from the perspective of the accuracy of the discriminant models and the number of optimal wavenumbers. The results of this study showed that the FTIR spectroscopic technique combined with the SSAE algorithm could be adopted in the identification of the orchid varieties.


2021 ◽  
Author(s):  
Tim Brandes ◽  
Stefano Scarso ◽  
Christian Koch ◽  
Stephan Staudacher

Abstract A numerical experiment of intentionally reduced complexity is used to demonstrate a method to classify flight missions in terms of the operational severity experienced by the engines. In this proof of concept, the general term of severity is limited to the erosion of the core flow compressor blade and vane leading edges. A Monte Carlo simulation of varying operational conditions generates a required database of 10000 flight missions. Each flight is sampled at a rate of 1 Hz. Eleven measurable or synthesizable physical parameters are deemed to be relevant for the problem. They are reduced to seven universal non-dimensional groups which are averaged for each flight. The application of principal component analysis allows a further reduction to three principal components. They are used to run a support-vector machine model in order to classify the flights. A linear kernel function is chosen for the support-vector machine due to its low computation time compared to other functions. The robustness of the classification approach against measurement precision error is evaluated. In addition, a minimum number of flights required for training and a sensible number of severity classes are documented. Furthermore, the importance to train the algorithms on a sufficiently wide range of operations is presented.


2021 ◽  
Vol 35 (3) ◽  
pp. 209-215
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Data mining techniques are included with Ensemble learning and deep learning for the classification. The methods used for classification are, Single C5.0 Tree (C5.0), Classification and Regression Tree (CART), kernel-based Support Vector Machine (SVM) with linear kernel, ensemble (CART, SVM, C5.0), Neural Network-based Fit single-hidden-layer neural network (NN), Neural Networks with Principal Component Analysis (PCA-NN), deep learning-based H2OBinomialModel-Deeplearning (HBM-DNN) and Enhanced H2OBinomialModel-Deeplearning (EHBM-DNN). In this study, experiments were conducted on pre-processed datasets using R programming and 10-fold cross-validation technique. The findings show that the ensemble model (CART, SVM and C5.0) and EHBM-DNN are more accurate for classification, compared with other methods.


Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 380 ◽  
Author(s):  
Kai Ye

When identifying the key features of the network intrusion signal based on the GA-RBF algorithm (using the genetic algorithm to optimize the radial basis) to identify the key features of the network intrusion signal, the pre-processing process of the network intrusion signal data is neglected, resulting in an increase in network signal data noise, reducing the accuracy of key feature recognition. Therefore, a key feature recognition algorithm for network intrusion signals based on neural network and support vector machine is proposed. The principal component neural network (PCNN) is used to extract the characteristics of the network intrusion signal and the support vector machine multi-classifier is constructed. The feature extraction result is input into the support vector machine classifier. Combined with PCNN and SVM (Support Vector Machine) algorithms, the key features of network intrusion signals are identified. The experimental results show that the algorithm has the advantages of high precision, low false positive rate and the recognition time of key features of R2L (it is a common way of network intrusion attack) data set is only 3.18 ms.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050326
Author(s):  
Ning Cao ◽  
Jianjun Wang

The realization of exploratory innovation is a complex and nonlinear evolutionary problem. Existing works point out that it is closely related with knowledge governance and boundary-spanning search. However, the intricate relationship among them still lacks exact quantitative explanations. Motivated by this, using four machine learning methods, namely, linear regression (LR), neural network (NN), support vector machine (SVM) and k-nearest neighbors (KNN), we explore how boundary-spanning search combined with knowledge governance influences innovation. Results show that SVM has the highest values of both stability and goodness of fitting. The SVM results show that the combination of low knowledge governance and high boundary-spanning search boosts innovation most efficiently, while high knowledge governance combined with low boundary-spanning search caused the most detrimental effect on innovation. Our results reveal enhancing boundary-spanning search is essential and beneficial to innovation.


Author(s):  
Bong-Hyun Kim ◽  
Kijin Yu ◽  
Peter C W Lee

Abstract Motivation Cancer classification based on gene expression profiles has provided insight on the causes of cancer and cancer treatment. Recently, machine learning-based approaches have been attempted in downstream cancer analysis to address the large differences in gene expression values, as determined by single-cell RNA sequencing (scRNA-seq). Results We designed cancer classifiers that can identify 21 types of cancers and normal tissues based on bulk RNA-seq as well as scRNA-seq data. Training was performed with 7398 cancer samples and 640 normal samples from 21 tumors and normal tissues in TCGA based on the 300 most significant genes expressed in each cancer. Then, we compared neural network (NN), support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF) methods. The NN performed consistently better than other methods. We further applied our approach to scRNA-seq transformed by kNN smoothing and found that our model successfully classified cancer types and normal samples. Availability and implementation Cancer classification by neural network. Supplementary information Supplementary data are available at Bioinformatics online.


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 513
Author(s):  
Olga Valenzuela ◽  
Beatriz Prieto ◽  
Elvira Delgado-Marquez ◽  
Hector Pomares ◽  
Ignacio Rojas

Heart disease is currently one of the leading causes of death in developed countries. The electrocardiogram is an important source of information for identifying these conditions, therefore, becomes necessary to seek an advanced system of diagnosis based on these signals. In this paper we used samples of electrocardiograms of MIT-related database with ten types of pathologies and a rate corresponding to normal (healthy patient), which are processed and used for extraction from its two branches of a wide range of features. Next, various techniques have been applied to feature selection based on genetic algorithms, principal component analysis and mutual information. To carry out the task of intelligent classification, 3 different scenarios have been considered. These techniques allow us to achieve greater efficiency in the classification methods used, namely support vector machines (SVM) and decision trees (DT) to perform a comparative analysis between them. Finally, during the development of this contribution, the use of very non-invasive devices (2 channel ECG) was analyzed, we could practically classify them as wearable, which would not need interaction by the user, and whose energy consumption is very small to extend the average life of the user been on it.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4788
Author(s):  
Almudena Bartolomé-Tomás ◽  
Roberto Sánchez-Reolid ◽  
Alicia Fernández-Sotos ◽  
José Miguel Latorre ◽  
Antonio Fernández-Caballero

The detection of emotions is fundamental in many areas related to health and well-being. This paper presents the identification of the level of arousal in older people by monitoring their electrodermal activity (EDA) through a commercial device. The objective was to recognize arousal changes to create future therapies that help them to improve their mood, contributing to reduce possible situations of depression and anxiety. To this end, some elderly people in the region of Murcia were exposed to listening to various musical genres (flamenco, Spanish folklore, Cuban genre and rock/jazz) that they heard in their youth. Using methods based on the process of deconvolution of the EDA signal, two different studies were carried out. The first, of a purely statistical nature, was based on the search for statistically significant differences for a series of temporal, morphological, statistical and frequency features of the processed signals. It was found that Flamenco and Spanish Folklore presented the highest number of statistically significant parameters. In the second study, a wide range of classifiers was used to analyze the possible correlations between the detection of the EDA-based arousal level compared to the participants’ responses to the level of arousal subjectively felt. In this case, it was obtained that the best classifiers are support vector machines, with 87% accuracy for flamenco and 83.1% for Spanish Folklore, followed by K-nearest neighbors with 81.4% and 81.5% for Flamenco and Spanish Folklore again. These results reinforce the notion of familiarity with a musical genre on emotional induction.


Sign in / Sign up

Export Citation Format

Share Document