scholarly journals CPTM Discrete Symmetry, Quantum Wormholes and Cosmological Constant Problem

Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 121
Author(s):  
Sergey Bondarenko

We discuss the consequences of the charge, parity, time, and mass (CPTM) extended reversal symmetry for the problems of the vacuum energy density and value of the cosmological constant. The results obtained are based on the framework with the separation of extended space-time of the interest on the different regions connected by this symmetry with the action of the theory valid for the full space-time and symmetrical with respect to the extended CPTM transformations. The cosmological constant is arising in the model due the gravitational interactions between the different parts of the space-time trough the quantum non-local vertices. It is proposed that the constant’s value depends on the form and geometry of the vertices that glue the separated parts of the extended solution of Einstein equations determining, in turn, its classical geometry. The similarity of the proposed model to the bimetric theories of gravitation is also discussed.

2004 ◽  
Vol 19 (29) ◽  
pp. 5051-5084
Author(s):  
WOJCIECH TARKOWSKI

A value of the cosmological constant in a toy model of the five-dimensional universe is calculated in such a manner that it remains in agreement with both astronomical observations and the quantum field theory concerning the zero-point fluctuations of the vacuum. The (negative) cosmological constant is equal to the inverse of the Planck length squared, which means that in the toy model the vanishing of the observed value of the cosmological constant is a consequence of the existence of an energy cutoff exactly at the Planck level. In turn, a model for both a virtual and a real particle–antiparticle pair is proposed which describes properly some energetic properties of both the vacuum fluctuations and created particles, as well as it allows one to calculate the discrete "bare" values of an elementary particle's mass, electric charge and intrinsic angular momentum (spin) at the energy cutoff. The relationships between the discussed model and some phenomena such as the Zitterbewegung and the Unruh–Davies effect are briefly analyzed, too. The proposed model also allows one to derive the Lorentz transformation and the Maxwell equations while considering the properties of the vacuum filled with the sea of virtual particles and their antiparticles. Finally, the existence of a finite value of the vacuum-energy density resulting from the toy model leads us to the formulation of dimensionless Einstein equations which may be derived from the Lagrangian with a dimensionless (naively renormalized) coupling constant.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
S. Bondarenko

AbstractThe problem of the cosmological constant is considered in the formalism of an extended space-time consisting of the extended classical solution of Einstein equations. The different regions of the extended manifold are proposed to be related by the charge, parity, time and mass (CPTM) reversal symmetry applied with respect to the metric fields of the manifolds. There are interactions between the points of the extended manifold provided by scalar fields present separately in the different patches of the extended solution. The value of the constant is obtained equal to zero at the classical level due the mutual contribution of the fields in the vacuum energy, it’s non-zero value is due the quantum interactions between the fields. There are few possible scenario for the actions of the fields are discussed. Each from the obtained variants is similar to the closed time path approach of non-equilibrium condensed matter physics and among these possibilities for the closed paths, there is a variant of the action equivalent to the formalism of Keldysh. Accordingly, we consider and shortly discuss the application of the proposed formalism to the problem of smallness of the cosmological constant and singularities problem.


2016 ◽  
Vol 41 ◽  
pp. 1660127
Author(s):  
Irina Dymnikova ◽  
Anna Dobosz ◽  
Bożena Sołtysek

We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 287 ◽  
Author(s):  
Claudio Cremaschini ◽  
Massimo Tessarotto

Space-time quantum contributions to the classical Einstein equations of General Relativity are determined. The theoretical background is provided by the non-perturbative theory of manifestly-covariant quantum gravity and the trajectory-based representation of the related quantum wave equation in terms of the Generalized Lagrangian path formalism. To reach the target an extended functional setting is introduced, permitting the treatment of a non-stationary background metric tensor allowed to depend on both space-time coordinates and a suitably-defined invariant proper-time parameter. Based on the Hamiltonian representation of the corresponding quantum hydrodynamic equations occurring in such a context, the quantum-modified Einstein field equations are obtained. As an application, the quantum origin of the cosmological constant is investigated. This is shown to be ascribed to the non-linear Bohm quantum interaction of the gravitational field with itself in vacuum and to depend generally also on the realization of the quantum probability density for the quantum gravitational field tensor. The emerging physical picture predicts a generally non-stationary quantum cosmological constant which originates from fluctuations (i.e., gradients) of vacuum quantum gravitational energy density and is consistent with the existence of quantum massive gravitons.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 322 ◽  
Author(s):  
Piero Chiarelli

The work shows that the evolution of the field of the free Klein–Gordon equation (KGE), in the hydrodynamic representation, can be represented by the motion of a mass density ∝ | ψ | 2 subject to the Bohm-type quantum potential, whose equation can be derived by a minimum action principle. Once the quantum hydrodynamic motion equations have been covariantly extended to the curved space-time, the gravity equation (GE), determining the geometry of the space-time, is obtained by minimizing the overall action comprehending the gravitational field. The derived Einstein-like gravity for the KGE field shows an energy-impulse tensor density (EITD) that is a function of the field with the spontaneous emergence of the “cosmological” pressure tensor density (CPTD) that in the classical limit leads to the cosmological constant (CC). The energy-impulse tensor of the theory shows analogies with the modified Brans–Dick gravity with an effective gravity constant G divided by the field squared. Even if the classical cosmological constant is set to zero, the model shows the emergence of a theory-derived quantum CPTD that, in principle, allows to have a stable quantum vacuum (out of the collapsed branched polymer phase) without postulating a non-zero classical CC. In the classical macroscopic limit, the gravity equation of the KGE field leads to the Einstein equation. Moreover, if the boson field of the photon is considered, the EITD correctly leads to its electromagnetic energy-impulse tensor density. The work shows that the cosmological constant can be considered as a second order correction to the Newtonian gravity. The outputs of the theory show that the expectation value of the CPTD is independent by the zero-point vacuum energy density and that it takes contribution only from the space where the mass is localized (and the space-time is curvilinear) while tending to zero as the space-time approaches to the flat vacuum, leading to an overall cosmological effect on the motion of the galaxies that may possibly be compatible with the astronomical observations.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850041 ◽  
Author(s):  
F. Gholami ◽  
A. Haji-Badali ◽  
F. Darabi

We classify all warped product space-times in three categories as (i) generalized twisted product structures, (ii) base conformal warped product structures and (iii) generalized static space-times and then we obtain the Einstein equations with the corresponding cosmological constant by which we can determine uniquely the warp functions in these warped product space-times.


2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


Author(s):  
Аnatoly М. Shutyi ◽  

Based on the general principle of the unity of the nature of interacting entities and the principle of the relativity of motion, as well as following the requirement of an indissoluble and conditioning connection of space and time, the model of a discrete space-time consisting of identical interacting particles is proposed as the most acceptable one. We consider the consequences of the discreteness of space, such as: the occurrence of time quanta, the limiting speed of signal propa­gation, and the constancy of this speed, regardless of the motion of the reference frame. Regularly performed acts of particles of space-time (PST) interaction en­sure the connectivity of space, set the quantum of time and the maximum speed – the speed of light. In the process of PST communication, their mixing occurs, which ensures the relativity of inertial motion, and can also underlie quantum uncertainty. In this case, elementary particles are spatial configurations of an excited “lattice” of PST, and particles with mass must contain loop struc­tures in their configuration. A new interpretation of quantum mechanics is pro­posed, according to which the wave function determines the probability of de­struction of a spatial configuration (representing a quantum object) in its corresponding region, which leads to the contraction of the entire structure to a given, detectable component. Particle entanglement is explained by the appear­ance of additional links between the PST – the appearance of a local coordinate along which the distance between entangled objects does not increase. It is shown that the movement of a body should lead to an asymmetry of the tension of the bonds between the PST – to the asymmetry of its effective gravity, the es­tablishment of which is one of the possibilities for experimental verification of the proposed model. It is shown that the constancy of the speed of light in a vac­uum and the appearance of relativistic effects are based on ensuring the connec­tivity of space-time, i.e. striving to prevent its rupture.


Sign in / Sign up

Export Citation Format

Share Document