scholarly journals Lentiviral Vector Bioprocessing

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 268
Author(s):  
Christopher Perry ◽  
Andrea C. M. E. Rayat

Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.

2003 ◽  
Vol 12 (3) ◽  
pp. 221-228 ◽  
Author(s):  
Jason E. Coleman ◽  
Matthew J. Huentelman ◽  
Sergey Kasparov ◽  
Beverly L. Metcalfe ◽  
Julian F. R. Paton ◽  
...  

The aim of this study was to develop an efficient method for packaging and concentrating lentiviral vectors that consistently yields high-titer virus on a scale suitable for in vivo applications. Transient cotransfection of 293T packaging cells with DNA plasmids encoding lentiviral vector components was optimized using SuperFect, an activated dendrimer-based transfection reagent. The use of SuperFect allowed reproducible and efficient production of high-titer lentiviral vector at concentrations greater than 1 × 107transducing units per ml (TU/ml) and required less than one-third of the total amount of DNA used in traditional calcium phosphate transfection methods. Viral titers were further increased using a novel concentration protocol that yielded an average final titer of 1.4 × 1010TU/ml. Lentiviruses produced using these methods exhibited efficient transduction of central nervous system and peripheral tissues in vivo. The method is reproducible and can be scaled up to facilitate the use of these vectors in animal studies.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Xuan Guan ◽  
David L Mack ◽  
Claudia M Moreno ◽  
Fernando Santana ◽  
Charles E Murry ◽  
...  

Introduction: Human somatic cells can be reprogrammed into primitive stem cells, termed induced pluripotent stem cells (iPSCs). These iPSCs can be extensively expanded in vitro and differentiated into multiple functional cell types, enabling faithful preservation of individual’s genotype and large scale production of disease targeted cellular components. These unique cellular reagents thus hold tremendous potential in disease mechanism study, drugs screening and cell replacement therapy. Due to the genetic mutation of the protein dystrophin, many DMD patients develop fatal cardiomyopathy with no effective treatment. The underlying pathogenesis has not been fully elucidated. Hypothesis: We tested the hypothesis that iPSCs could be generated from DMD patients’ urine samples and differentiated into cardiomyocytes, recapitulating the dystrophic phenotype. Methods: iPSCs generation was achieved by introducing a lentiviral vector expressing Oct4, Sox2, c-Myc and Klf4 into cells derived from patient’s (n=1) and healthy volunteers’ (n=3) urine. Cardiomyocytes were derived by sequentially treating iPSCs with GSK3 inhibitor CHIR99021 and Wnt inhibitor IWP4. Differentiated cardiomyocytes were subjected to calcium imaging, electrophysiology recording, Polymerase Chain Reaction (PCR) analysis, and immunostaining. Results: iPSCs were efficiently generated from human urine samples and further forced to differentiate into contracting cardiomyocytes. PCR analysis and immunostaining confirmed the expression of a panel of cardiac markers. Both normal and patient iPSC derived cardiomyocytes exhibited spontaneous and field stimulated calcium transients (up to 2Hz), as well as action potentials with ventricular-like and nodal-like characteristics. Anti-dystrophin antibodies stained normal iPSC-derived cardiomyocyte membranes but did not react against DMD iPSC-derived cardiomyocytes. Conclusions: Cardiomyocytes can be efficiently generated from human urine, through the cellular reprogramming technology. DMD cardiomyocytes retained the patient’s genetic information and manifested a dystrophin-null phenotype. Functional assessments are underway to determine differences that may exist between genotypes.


2020 ◽  
Author(s):  
Götz Laible ◽  
Sally Cole ◽  
Brigid Brophy ◽  
Paul Maclean ◽  
Li How Chen ◽  
...  

ABSTRACTTherapeutic monoclonal antibodies (mAbs) represent one of the most important classes of pharmaceutical proteins to treat human diseases. Most are produced in cultured mammalian cells which is expensive, limiting their availability. Goats, striking a good balance between a relatively short generation time and copious milk yield, present an alternative platform for the cost-effective, flexible, large-scale production of therapeutic mAbs. Here, we focused on cetuximab, a mAb against epidermal growth factor receptor, that is commercially produced under the brand name Erbitux and approved for anti-cancer treatments. We generated several transgenic goat lines that produce cetuximab in their milk. Two lines were selected for detailed characterization. Both showed stable genotypes and cetuximab production levels of up to 10g/L. The mAb could be readily purified and showed improved characteristics compared to Erbitux. The goat-produced cetuximab (gCetuximab) lacked a highly immunogenic epitope that is part of Erbitux. Moreover, it showed enhanced binding to CD16 and increased antibody-dependent cell-dependent cytotoxicity compared to Erbitux. This indicates that these goats produce an improved cetuximab version with the potential for enhanced effectiveness and better safety profile compared to treatments with Erbitux. In addition, our study validates transgenic goats as an excellent platform for large-scale production of therapeutic mAbs.


1988 ◽  
Vol 6 (5) ◽  
pp. 518-523 ◽  
Author(s):  
Malcolm Rhodes ◽  
John Birch

2019 ◽  
Vol 20 (23) ◽  
pp. 5862 ◽  
Author(s):  
Daniel Brady ◽  
Alessandro Grapputo ◽  
Ottavia Romoli ◽  
Federica Sandrelli

The alarming escalation of infectious diseases resistant to conventional antibiotics requires urgent global actions, including the development of new therapeutics. Antimicrobial peptides (AMPs) represent potential alternatives in the treatment of multi-drug resistant (MDR) infections. Here, we focus on Cecropins (Cecs), a group of naturally occurring AMPs in insects, and on synthetic Cec-analogs. We describe their action mechanisms and antimicrobial activity against MDR bacteria and other pathogens. We report several data suggesting that Cec and Cec-analog peptides are promising antibacterial therapeutic candidates, including their low toxicity against mammalian cells, and anti-inflammatory activity. We highlight limitations linked to the use of peptides as therapeutics and discuss methods overcoming these constraints, particularly regarding the introduction of nanotechnologies. New formulations based on natural Cecs would allow the development of drugs active against Gram-negative bacteria, and those based on Cec-analogs would give rise to therapeutics effective against both Gram-positive and Gram-negative pathogens. Cecs and Cec-analogs might be also employed to coat biomaterials for medical devices as an approach to prevent biomaterial-associated infections. The cost of large-scale production is discussed in comparison with the economic and social burden resulting from the progressive diffusion of MDR infectious diseases.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1051
Author(s):  
Eduardo Martínez-Molina ◽  
Carlos Chocarro-Wrona ◽  
Daniel Martínez-Moreno ◽  
Juan A. Marchal ◽  
Houria Boulaiz

Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1754-1754
Author(s):  
Brian Paszkiet ◽  
Andrew Worden ◽  
Yajin Ni ◽  
Saran Bao ◽  
Franck Lemiale ◽  
...  

Abstract We established the first clinical ex vivo HIV-based vector gene therapy trial in humans with HIV+ CD4+ T-cells. Briefly, this therapy involves modifying patient CD4+ T-cells with our modified lentiviral vector carrying an anti-HIV payload. These cells are then activated and expanded, and re-infused back into the patient. However, cGMP regulations require the use of costly clinical grade reagents (i.e. Retronectin™, CD3/CD28 stimulating paramagnetic beads). In an attempt to reduce ex-vivo processing costs, but not at the expense of transduction levels, we sought to determine a way to directly activate CD4+ T-cells with modified lentiviral vectors. 293FT HEK cell lines, used for producing our lentiviral vectors, were modified to co-express the natural CD28 stimulatory ligand B7.2 (CD86) and ICAM-1 (CD54) proteins on their membrane for co-stimulation and anchoring purposes. When CliniMACS purified normal donor CD4+ T cells were co-cultured with CD54/CD86-expressing cells, in the presence of soluble OKT3 CD3 antibody, CD25 and CD69 activation markers were upregulated, indicating that functional proteins were being expressed at the cell membrane. These CD54 and/or CD86 expressing cells could subsequently be transfected with lentiviral vector plasmid constructs in order to produce host-derived CD54 and/or CD86 bearing HIV-based vectors. EGFP-expressing lentiviral vectors, VRX494, with CD54/CD86-modified envelopes were produced both in these cell lines and by transient transfection of all relevant plasmids, and titers were assayed on Hela-Tat cells by FACS. CD54 modified lentiviral vectors showed increased binding to CD4+ T-cells, as evidenced by significant cell clumping. CD86 (as well as CD54 plus CD86) modified lentiviral vector, with soluble OKT3 CD3 antibody, was shown to activate T-cells, above the levels seen with unmodified lentiviral vectors, as evidenced by the increase in cell surface CD25 and CD69 expression and also the increase in cell size. Cellular expansion of modified lentiviral vector transduced CD4+ T cells reached levels close to CD3:CD28 bead stimulated CD4+ T cell controls over a period of 2 to 3 weeks. The CD3/TCR repertoire was assessed by flow cytometry and, compared to the well-established CD3/CD28 coated M450 Dynabeads stimulatory system as a control, no skewing of the repertoire was observed. CD86 was shown to improve levels of transduction in pre-activated lymphocytes with CD3/CD28 coated M450 Dynabeads. However, CD86 co-expression was crucial for transducing minimally activated CD4+ T cells with only soluble OKT3 CD3 antibody. Levels of transduction and activation were on average 2 to 3 times higher with the modified lentiviral vectors. To our knowledge, we are reporting the first generation of lentiviral particles exhibiting an adhesion property with stimulatory abilities. The development of such a lentiviral vector has valuable implications for clinical application by reducing the number of exogenous reagents in large scale cell processing.


Sign in / Sign up

Export Citation Format

Share Document