scholarly journals Organization of the Structural Protein Region of La Jolla Virus Isolated from the Invasive Pest Insect Drosophila suzukii

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Tessa Carrau ◽  
Benjamin Lamp ◽  
Carina M. Reuscher ◽  
Andreas Vilcinsksas ◽  
Kwang-Zin Lee

Drosophila suzukii (Ds) is an invasive pest insect that infests ripening fruit, causing severe economic losses. Control measures based on chemical pesticides are inefficient and undesirable, so biological alternatives have been considered, including native Ds viruses. We previously isolated a strain of La Jolla virus (LJV-Ds-OS20) from Ds in Germany as a candidate biopesticide. Here we characterized the new strain in detail, focusing on the processing of its capsid proteins. We tested LJV growth during Ds development to optimize virus production, and established a laboratory production system using adult flies. This system was suitable for the preparation of virions for detailed analysis. The LJV-Ds-OS20 isolate was cloned by limiting dilution and the complete nucleotide sequence was determined as a basis for protein analysis. The terminal segments of the virus genome were completed by RACE-PCR. LJV virions were also purified by CsCl gradient centrifugation and analyzed by SDS-PAGE and electron microscopy. The capsid proteins of purified LJV virions were resolved by two-dimensional SDS-PAGE for N-terminal sequencing and peptide mass fingerprinting. The N-terminal sequences of VP1 and VP2, together with MS data representing several capsid proteins, allowed us to develop a model for the organization of the LJV structural protein region. This may facilitate the development of new viral strains as biopesticides.

2016 ◽  
Vol 51 (5) ◽  
pp. 571-578 ◽  
Author(s):  
Norton Polo Benito ◽  
Marcelo Lopes-da-Silva ◽  
Régis Sivori Silva dos Santos

Abstract: The objective of this work was to outline the potential distribution and economic impact of Drosophila suzukii (Diptera: Drosophilidae), a recent invasive pest, in Brazil. Two maps of the potential establishment of the species were drawn based on the ecoclimatic index (EI), which uses the following thermal requirements for the species: with thermal stress, most restrictive scenario for spread; and without thermal stress. The EI was classified into four ranges: unfavorable, ≤25%; less favorable, >25 to ≤50%; favorable, >50 to ≤75%; and highly favorable, >75%. Economic losses were estimated based on the most restrictive map. The highly favorable areas were overlapped with those of the maps of production data for each possible host (apple, grape, peach, persimmon, fig, and pear). Considering these six hosts, the overlap between the highly favorable and the production areas varied from 45.5% (grape) to 98.3% (apple). However, the monetary estimation of the potential losses in the worst case scenario (no control measures) was possible only for figs and peaches. Southern Brazil is the most climatically favorable area for D. suzukii development and where potential economic losses are expected to be the greatest. Maximum average temperatures (>30°C) are the main ecological factor to limit D. suzukii spread in Brazil.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 125 ◽  
Author(s):  
Felix Briem ◽  
Anto Dominic ◽  
Burkhard Golla ◽  
Christoph Hoffmann ◽  
Camilla Englert ◽  
...  

Over the last decade, Drosophila suzukii Matsumura, an invasive pest of soft-skinned fruits, gradually established itself in Europe, often resulting in significant economic losses. In 2011, when D. suzukii was first described for Germany, the Julius Kühn Institut (JKI) started a monitoring program in southwest Germany to study the occurrence and activity of the fly. Capture data from late 2011–early 2018 from 100 traps were analyzed for the effect of weather and immediate habitat on trap captures at different times of the year. We identified five phases in the annual population development cycle of D. suzukii. We found that the mild winter of 2013/2014 helped the thorough establishment of D. suzukii in Germany. Habitat types in the immediate vicinity of the trap and local weather conditions had a strong influence on trap captures. Forest borders and hedges were found to provide adequate overwintering shelter for the flies. Trap captures in forests and hedges were generally higher than those of vineyards and orchards, even during the fruiting seasons. Summer capture rates were correlated with the number of heat days and precipitation. We also discuss briefly the limitations of using trap captures as representative of fly density in the field.


2015 ◽  
Vol 105 (3) ◽  
pp. 364-372 ◽  
Author(s):  
K.A. Murphy ◽  
T.R. Unruh ◽  
L.M. Zhou ◽  
F.G. Zalom ◽  
P.W. Shearer ◽  
...  

AbstractDrosophila suzukii (Spotted Wing Drosophila) has recently become a serious invasive pest of fruit crops in the USA, Canada, and Europe, leading to substantial economic losses. D. suzukii is a direct pest, ovipositing directly into ripe or ripening fruits; in contrast, other Drosophilids utilize decaying or blemished fruits and are nuisance pests at worst. Immature stages of D. suzukii are difficult to differentiate from other Drosophilids, posing problems for research and for meeting quarantine restrictions designed to prevent the spread of this pest in fruit exports. Here we used a combined phylogenetic and bioinformatic approach to discover genetic markers suitable for a species diagnostic protocol of this agricultural pest. We describe a molecular diagnostic for rapid identification of single D. suzukii larva using multiplex polymerase chain reaction. Our molecular diagnostic was validated using nine different species of Drosophila for specificity and 19 populations of D. suzukii from different geographical regions to ensure utility within species.


2017 ◽  
Vol 32 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Catherine Baroffio ◽  
Mélanie Dorsaz ◽  
Fabio Kuonen

Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae), the spotted wing Drosophila (SWD) is a concern for small fruit and stone fruit growers. This invasive pest lays eggs in healthy fruits with a serrated ovipositor, resulting in considerable economic losses, mainly in berry crops. In Europe, it was first recorded in Switzerland in 2011, causing considerable damage in all small fruit crops, especially in later-developing crops (autumn raspberries, blackberries, blueberries and elderberries). The pest was found in all regions of the country, from low altitudes to the timberline. The range of host plants is very broad, not only affecting crops, but also wild fruits. Switzerland has implemented a strategy at the national level by combining an effective monitoring system with hygiene measures and mass trapping. Insecticide applications, usually based on spinosyns, are only considered as a last resort. In addition to this already operative strategy, innovative alternatives are considered, in particular the use of repellents or masking substances.


2020 ◽  
Vol 113 (3) ◽  
pp. 1097-1104 ◽  
Author(s):  
Marysol Aceituno-Medina ◽  
Alicia Ordoñez ◽  
Morfa Carrasco ◽  
Pablo Montoya ◽  
Emilio Hernández

Abstract The spotted wing drosophila, Drosophila suzukii Matsumura, has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe in the last decade. Females oviposit in ripening fruit, and significant economic losses can occur. Control measures are mainly associated with the use of pesticides, but the sterile insect technique (SIT), an ecologically friendly pest-specific method, could be used against this species. The objective of this study was to estimate the mass rearing, quality control parameters, and bioconversion using four artificial larval diets and their economic aspects oriented to the SIT application. Diets were based on the combination of coconut fiber, corncob powder, Brewer’s and Torula yeast and were used as oviposition substrate and larval development. We found that a life cycle is completed in 10.19 ± 0.35 d and that adults live an average of 33.67 ± 0.76 d. The highest number of pupae per gram of diet and the maximum bioconversion (6%) were associated with flies developed in the coconut fiber + Brewer’s yeast diet. Under our conditions, the establishment of D. suzukii required at least four generations. The use of 30 × 40 × 30 cm Plexiglas cages, each loaded with 5,000 adults and stocked with 500 g of coconut fiber and Brewer’s yeast diet distributed in 15 × 5 × 10 cm plastic trays with a diet layer 3-cm thick, allows a minimum production of 84,000 pupae of D. suzukii per day.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nicholas R. Larson ◽  
Jaime Strickland ◽  
Vonnie D. Shields ◽  
Cesar Rodriguez-Saona ◽  
Kevin Cloonan ◽  
...  

Drosophila suzukii, more commonly known as the spotted-wing drosophila (SWD), is an invasive pest of soft, thin-skinned fruit responsible for significant economic losses for growers worldwide. To detect and monitor this pest, several host attractants have been developed for use in trapping SWD; however, they lack selectivity. Therefore, there is a significant need for more selective monitoring devices to enable growers to make timely pest management decisions to properly protect vulnerable crops. Previous studies identified a quinary blend (QB), based on fermenting apple juice odors, which offers significantly higher selectivity by reducing non-target captures compared with the standard apple cider vinegar bait commonly used by growers in the orchards. In this study, the selectivity and efficacy of a home-made QB dispenser was compared to an industry formulated version of the QB components (ChemTica) and two commercially available (Scentry and Trécé) SWD dispensers across blueberry and raspberry fields in Maryland, West Virginia, and New Jersey in different seasons. Controlled-release dispensers of the QB (home-made and ChemTica) consistently had higher selectivity within the blueberry and raspberry field sites compared with the two commercial dispensers; although efficacy was compromised such that total SWD captures per trap tended to be lower. The selectivity ratio range of SWD to non-targets (all non-SWD) for a QB-based (ChemTica) dispenser averaged from 15 to 57% compared with other commercial dispensers that ranged from 1 to 30% based on location and year. Due to high selectivity of the controlled-release dispenser of the QB, the potential for this dispenser to be utilized by growers as a SWD detection and monitoring tool is high.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gigi DiGiacomo ◽  
Joleen Hadrich ◽  
William D Hutchison ◽  
Hikaru Peterson ◽  
Mary Rogers

Abstract Minnesota was dubbed the ‘raspberry consumption capital of America’ in 2017 by wholesaler Driscoll’s, Inc. Local production of this high-demand fruit, however, is limited by the invasive pest, spotted wing Drosophila (Drosophila suzukii Matsumura, Diptera: Drosophilidae). Recent research to develop integrated pest management (IPM) programs for MN berry crops indicates that raspberry growers are particularly vulnerable to significant spotted wing Drosophila-related yield losses. Spotted wing Drosophila was detected in Minnesota in 2012 across 29 counties. This analysis explores the economic impact of raspberry yield losses associated with spotted wing Drosophila in Minnesota as part of a multifaceted research initiative. An electronic survey of 157 MN berry growers was conducted in November 2017. Eighty-two individual grower surveys were returned (52% response rate). The survey included questions about production acreage, marketing practices, spotted wing Drosophila-related yield losses and future production intentions. The results of the e-survey indicate that raspberry growers have borne the highest levels of infestation among MN fruit growers surveyed. Spotted wing Drosophila-related yield losses for raspberry growers ranged from 2 to 100% of planted acreage.The median yield loss for this group of growers was 20% in 2017. Applying the median yield loss to ex-ante production estimates, we conclude that MN growers lost approximately $2.36 million in raspberry sales during the 1 yr studied. Investing in spotted wing Drosophila control measures will help MN growers reduce some of these losses in the future.


Author(s):  
Sarah Petermann ◽  
Sabine Otto ◽  
Gerrit Eichner ◽  
Marc F. Schetelig

AbstractNative to Southeast Asia, the spotted wing drosophila (SWD), Drosophila suzukii Matsumura, rapidly invaded America and Europe in the past 20 years. As a crop pest of soft-skinned fruits with a wide range of host plants, it threatens the fruit industry worldwide, causing enormous economic losses. To control this invasive pest species, an understanding of its population dynamics and structure is necessary. Here, we report the population genetics and development of SWD in Germany from 2017–19 using microsatellite markers over 11 different sample sites. It is the first study that examines SWD’s genetic changes over 3 years compared to multiple international SWD laboratory strains. Results show that SWD populations in Germany are highly homogenous without differences between populations or years, which indicates that populations are well adapted, migrate freely, and multiple invasions from outside Germany either did not take place or are negligible. Such high genetic variability and migration between populations could allow for a fast establishment of the pest species. This is especially problematic with regard to the ongoing spread of this invasive species and could bear a potential for developing pesticide resistance, which could increase the impact of the SWD further in the future.


2016 ◽  
Vol 14 (2) ◽  
pp. e10SC01 ◽  
Author(s):  
Sergio Pérez-Guerrero ◽  
José M. Molina

Drosophila suzukii (Matsumura, 1931) is an invasive pest from South East Asia that was detected for the first time in Southern Europe in 2008. This species can damage a wide range of soft-skinned fruits crops affecting ripening fruits and causing important economic losses. Since the exclusive use of chemical insecticides for controlling D. suzukii may prompt the appearance of resistance and environmental pollution, alternative methods compatible with sustainable management are required. In this study, commercial formulations of powdered sulphur and kaolin were tested as a preventive method applied to blueberry fruits under laboratory conditions. In no-choice assay, powdered sulphur had a significant effect on oviposition and adult emergency with reductions of 76% and 77%, respectively. In addition, sulphur displayed a significant toxicity on males and lethal effect with over 40% adult mortality seven days after exposure. The choice assay confirmed and improved the powdered sulphur effects, with reductions of 98% and 96% in oviposition and adult emergence, respectively. In contrast, kaolin produced no significant reduction in infestation and adult mortality during no-choice and choice assays. These outcomes suggest that preventive use of powdered sulphur could be considered for sustainable control of D. suzukii in some berry crops.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 950
Author(s):  
Cecilia Righi ◽  
Stefano Petrini ◽  
Ilaria Pierini ◽  
Monica Giammarioli ◽  
Gian Mario De Mia

Border disease virus (BDV) belongs to the genus Pestivirus of the family Flaviviridae. Interspecies transmission of BDV between sheep, cattle, and pigs occurs regularly, sometimes making diagnosis a challenge. BDV can yield substantial economic losses, including prenatal and postnatal infections in lambs, which are the primary source of infection and maintenance of the virus in the population. Since BDV is antigenically and genetically related to bovine viral diarrhea virus (BVDV), it might pose a significant risk to cattle, influencing BVDV eradication campaigns. Similarly, the presence of BDV in swine herds due to pestivirus spillover between small ruminants and pigs might cause uncertainty in classical swine fever virus (CSFV) diagnostics. Therefore, knowledge of BDV epidemiology in different geographical regions will help prevent its spread and optimize control measures. Previous epidemiological studies have shown that various BDV genotypes are predominant in different countries. This review provides an overview of the spread of BDV world-wide in different host species.


Sign in / Sign up

Export Citation Format

Share Document