scholarly journals Neurotropic Astroviruses in Animals

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1201
Author(s):  
Nicole Wildi ◽  
Torsten Seuberlich

Astrovirus infections are among the main causes of diarrhea in children, but their significance for animal health has remained underestimated and largely unknown. This is changing due to the increasing amount of newly identified neurotropic astroviruses in cases of nonsuppurative encephalitis and neurological disease in humans, pigs, ruminant species and minks. Neurological cases in ruminants and humans usually occur sporadically and as isolated cases. This contrasts with the situation in pigs and minks, in which diseases associated with neurotropic astroviruses are endemic and occur on the herd level. Affected animals show neurological signs such as mild ataxia to tetraplegia, loss of orientation or trembling, and the outcome is often fatal. Non-suppurative inflammation with perivascular cuffing, gliosis and neuronal necrosis are typical histological lesions of astrovirus encephalitis. Since astroviruses primarily target the gastrointestinal tract, it is assumed that they infect the brain through the circulatory system or retrograde following the nerves. The phylogenetic analysis of neurotropic astroviruses has revealed that they are genetically closely related, suggesting the presence of viral determinants for tissue tropism and neuroinvasion. In this review, we summarize the current knowledge on neurotropic astrovirus infections in animals and propose future research activities.


2016 ◽  
Vol 130 (22) ◽  
pp. 2029-2042 ◽  
Author(s):  
Shengyuan Luo ◽  
Wenhao Xia ◽  
Cong Chen ◽  
Eric A. Robinson ◽  
Jun Tao

The discovery of endothelial progenitor cells (EPCs), a group of cells that play important roles in angiogenesis and the maintenance of vascular endothelial integrity, has led to considerable improvements in our understanding of the circulatory system and the regulatory mechanisms of vascular homoeostasis. Despite lingering disputes over where EPCs actually originate and how they facilitate angiogenesis, extensive research in the past decade has brought about significant advancements in this field of research, establishing EPCs as an essential element in the pathogenesis of various diseases. EPC and hypertensive disorders, especially essential hypertension (EH, also known as primary hypertension), represent one of the most appealing branches in this area of research. Chronic hypertension remains a major threat to public health, and the exact pathologic mechanisms of EH have never been fully elucidated. Is there a relationship between EPC and hypertension? If so, what is the nature of such relationship–is it mediated by blood pressure alterations, or other factors that lie in between? How can our current knowledge about EPCs be utilized to advance the prevention and clinical management of hypertension? In this review, we set out to answer these questions by summarizing the current concepts about EPC pathophysiology in the context of hypertension, while attempting to point out directions for future research on this subject.



Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1372 ◽  
Author(s):  
Karolina Wydra ◽  
Dawid Gawliński ◽  
Kinga Gawlińska ◽  
Małgorzata Frankowska ◽  
Dasiel O. Borroto-Escuela ◽  
...  

Several psychoactive drugs can evoke substance use disorders (SUD) in humans and animals, and these include psychostimulants, opioids, cannabinoids (CB), nicotine, and alcohol. The etiology, mechanistic processes, and the therapeutic options to deal with SUD are not well understood. The common feature of all abused drugs is that they increase dopamine (DA) neurotransmission within the mesocorticolimbic circuitry of the brain followed by the activation of DA receptors. D2 receptors were proposed as important molecular targets for SUD. The findings showed that D2 receptors formed heteromeric complexes with other GPCRs, which forced the addiction research area in new directions. In this review, we updated the view on the brain D2 receptor complexes with adenosine (A)2A receptors (A2AR) and discussed the role of A2AR in different aspects of addiction phenotypes in laboratory animal procedures that permit the highly complex syndrome of human drug addiction. We presented the current knowledge on the neurochemical in vivo and ex vivo mechanisms related to cocaine use disorder (CUD) and discussed future research directions for A2AR heteromeric complexes in SUD.



Author(s):  
Shlomit Ritz Finkelstein

This chapter explores and summarizes the current knowledge about the neurophysiological substrata of the utterance of expletives—its brain regions, pathways, and neurotransmitters, and its interaction with hormones. The chapter presents clinical data that have been gathered directly from patients of aphasia, Tourette syndrome, Alzheimer’s disease, and brain injuries—all are disorders often accompanied with expletives. It also discusses the possible relations between swearing and aggression, swearing and pain, and swearing and social inhibition in the population at large. Finally, the chapter examines the clinical data and the data gathered from the population at large within one frame, and proposes two hypotheses that can serve as possible directions for future research about the biological substrata of swearing. No previous knowledge of the brain is assumed.



2010 ◽  
Vol 138 (5) ◽  
pp. 626-644 ◽  
Author(s):  
B. CATRY ◽  
E. VAN DUIJKEREN ◽  
M. C. POMBA ◽  
C. GREKO ◽  
M. A. MORENO ◽  
...  

SUMMARYThe scope of this reflection paper was to review the latest research on the risk of MRSA infection and colonization in animals. Attention focused on occurrence, risk factors for colonization and infection, and human contact hazard for livestock, horses, and companion animals. Whereas the clonal relationship between MRSA strains of CC398 is straightforward in livestock this is less obvious in horses. Small companion animals typically share MRSA strains that seem to exchange with a human reservoir. Management and therapeutic options have been suggested for livestock, horses, companion animals, as well as instructions on safety measures for persons in contact with animals. Conclusions were drawn with emphasis on future research activities, especially to confirm the apparent evolution of the organism and to demonstrate efficiency of control strategies.



2018 ◽  
Author(s):  
Daniel Quintana ◽  
Knut T. Smerud ◽  
Ole A. Andreassen ◽  
Per G. Djupesland

The neuropeptide oxytocin plays an evolutionarily conserved role in mammalian social behavior. To experimentally manipulate central levels of oxytocin, animal studies have adopted direct intracerebroventricular (ICV) delivery to the brain, given that only small amounts of peripherally circulating oxytocin are thought to transfer from the periphery to the central compartment. Despite striking effects on social behavior in animals, ICV drug delivery is largely impractical for human therapies. Intranasal oxytocin delivery provides a non-invasive alternative to increase central oxytocin activity, and has shown promise as a treatment for psychiatric illnesses characterized by social dysfunction. Intranasal oxytocin delivery is purported to increase central oxytocin concentrations via channels surrounding trigeminal and olfactory nerve fibres, which may facilitate increased activity at central oxytocin receptors. This review outlines the evidence for intranasal oxytocin delivery increasing central concentrations or activity, identifies current knowledge gaps, and highlights future research opportunities. Recent efforts to enhance intranasal oxytocin delivery via improved intranasal delivery technology and dose-ranging studies are also discussed.



2021 ◽  
Vol 8 (1) ◽  
pp. 201234
Author(s):  
Jesús J. Bosque ◽  
Gabriel F. Calvo ◽  
Víctor M. Pérez-García ◽  
María Cruz Navarro

In recent decades, hyperthermia has been used to raise oxygenation levels in tumours undergoing other therapeutic modalities, of which radiotherapy is the most prominent one. It has been hypothesized that oxygenation increases would come from improved blood flow associated with vasodilation. However, no test has determined whether this is a relevant assumption or other mechanisms might be acting. Additionally, since hyperthermia and radiotherapy are not usually co-administered, the crucial question arises as to how temperature and perfusion in tumours will change during and after hyperthermia. Overall, it would seem necessary to find a research framework that clarifies the current knowledge, delimits the scope of the different effects and guides future research. Here, we propose a simple mathematical model to account for temperature and perfusion dynamics in brain tumours subjected to regional hyperthermia. Our results indicate that tumours in well-perfused organs like the brain might only reach therapeutic temperatures if their vasculature is highly disrupted. Furthermore, the characteristic times of return to normal temperature levels are markedly shorter than those required to deliver adjuvant radiotherapy. According to this, a mechanistic coupling of perfusion and temperature would not explain any major oxygenation boost in brain tumours immediately after hyperthermia.



Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 356
Author(s):  
Alessia Cogato ◽  
Marta Brščić ◽  
Hao Guo ◽  
Francesco Marinello ◽  
Andrea Pezzuolo

Over the last two decades, the dairy industry has adopted the use of Automatic Milking Systems (AMS). AMS have the potential to increase the effectiveness of the milking process and sustain animal welfare. This study assessed the state of the art of research activities on AMS through a systematic review of scientific and industrial research. The papers and patents of the last 20 years (2000–2019) were analysed to assess the research tendencies. The words appearing in title, abstract and keywords of a total of 802 documents were processed with the text mining tool. Four clusters were identified (Components, Technology, Process and Animal). For each cluster, the words frequency analysis enabled us to identify the research tendencies and gaps. The results showed that focuses of the scientific and industrial research areas complementary, with scientific papers mainly dealing with topics related to animal and process, and patents giving priority to technology and components. Both scientific and industrial research converged on some crucial objectives, such as animal welfare, process sustainability and technological development. Despite the increasing interest in animal welfare, this review highlighted that further progress is needed to meet the consumers’ demand. Moreover, milk yield is still regarded as more valuable compared to milk quality. Therefore, additional effort is necessary on the latter. At the process level, some gaps have been found related to cleaning operations, necessary to improve milk quality and animal health. The use of farm data and their incorporation on herd decision support systems (DSS) appeared optimal. The results presented in this review may be used as an overall assessment useful to address future research.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Ma ◽  
Tim A. McAllister ◽  
Le Luo Guan

AbstractAntimicrobials have been widely used to prevent and treat infectious diseases and promote growth in food-production animals. However, the occurrence of antimicrobial resistance poses a huge threat to public and animal health, especially in less developed countries where food-producing animals often intermingle with humans. To limit the spread of antimicrobial resistance from food-production animals to humans and the environment, it is essential to have a comprehensive knowledge of the role of the resistome in antimicrobial resistance (AMR), The resistome refers to the collection of all antimicrobial resistance genes associated with microbiota in a given environment. The dense microbiota in the digestive tract is known to harbour one of the most diverse resistomes in nature. Studies of the resistome in the digestive tract of humans and animals are increasing exponentially as a result of advancements in next-generation sequencing and the expansion of bioinformatic resources/tools to identify and describe the resistome. In this review, we outline the various tools/bioinformatic pipelines currently available to characterize and understand the nature of the intestinal resistome of swine, poultry, and ruminants. We then propose future research directions including analysis of resistome using long-read sequencing, investigation in the role of mobile genetic elements in the expression, function and transmission of AMR. This review outlines the current knowledge and approaches to studying the resistome in food-producing animals and sheds light on future strategies to reduce antimicrobial usage and control the spread of AMR both within and from livestock production systems.



2008 ◽  
Vol 21 (2) ◽  
pp. 207-234 ◽  
Author(s):  
John R. Roche ◽  
Dominique Blache ◽  
Jane K. Kay ◽  
Dale R. Miller ◽  
Angela J. Sheahan ◽  
...  

The central nervous system undertakes the homeostatic role of sensing nutrient intake and body reserves, integrating the information, and regulating energy intake and/or energy expenditure. Few tasks regulated by the brain hold greater survival value, particularly important in farmed ruminant species, where the demands of pregnancy, lactation and/or growth are not easily met by often bulky plant-based and sometimes nutrient-sparse diets. Information regarding metabolic state can be transmitted to the appetite control centres of the brain by a diverse array of signals, such as stimulation of the vagus nerve, or metabolic ‘feedback’ factors derived from the pituitary gland, adipose tissue, stomach/abomasum, intestine, pancreas and/or muscle. These signals act directly on the neurons located in the arcuate nucleus of the medio-basal hypothalamus, a key integration, and hunger (orexigenic) and satiety (anorexigenic) control centre of the brain. Interest in human obesity and associated disorders has fuelled considerable research effort in this area, resulting in increased understanding of chronic and acute factors influencing feed intake. In recent years, research has demonstrated that these results have relevance to animal production, with genetic selection for production found to affect orexigenic hormones, feeding found to reduce the concentration of acute controllers of orexigenic signals, and exogenous administration of orexigenic hormones (i.e. growth hormone or ghrelin) reportedly increasing DM intake in ruminant animals as well as single-stomached species. The current state of knowledge on factors influencing the hypothalamic orexigenic and anorexigenic control centres is reviewed, particularly as it relates to domesticated ruminant animals, and potential avenues for future research are identified.



2021 ◽  
Vol 15 ◽  
Author(s):  
Joachim Keppler

The goal of this work is to compile the basic components for the construction of an electromagnetic field theory of consciousness that meets the standards of a fundamental theory. An essential cornerstone of the conceptual framework is the vacuum state of quantum electrodynamics which, contrary to the classical notion of the vacuum, can be viewed as a vibrant ocean of energy, termed zero-point field (ZPF). Being the fundamental substrate mediating the electromagnetic force, the ubiquitous ZPF constitutes the ultimate bedrock of all electromagnetic phenomena. In particular, resonant interaction with the ZPF is critical for understanding rapidly forming, long-range coherent activity patterns that are characteristic of brain dynamics. Assuming that the entire phenomenal color palette is rooted in the vibrational spectrum of the ZPF and that each normal mode of the ZPF is associated with an elementary shade of consciousness, it stands to reason that conscious states are caused by the coupling of the brain to a particular set of normal modes selectively filtered from the full frequency spectrum of the ZPF. From this perspective, the brain is postulated to function as a resonant oscillator that couples to a specific range of ZPF modes, using these modes as a keyboard for the composition of an enormous variety of phenomenal states. Theoretical considerations suggest that the brain-ZPF interface is controlled by altering the concentrations of neurotransmitters, placing the detailed study of the neurotransmitter-ZPF interaction at the center of future research activities.



Sign in / Sign up

Export Citation Format

Share Document