scholarly journals Geographic Partitioning of Dengue Virus Transmission Risk in Florida

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2232
Author(s):  
Caroline J. Stephenson ◽  
Heather Coatsworth ◽  
Christy M. Waits ◽  
Nicole M. Nazario-Maldonado ◽  
Derrick K. Mathias ◽  
...  

Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.

2021 ◽  
Author(s):  
Caroline J. Stephenson ◽  
Heather Coatsworth ◽  
Christy M. Waits ◽  
Nicole M. Nazario-Maldonado ◽  
Derrick K. Mathias ◽  
...  

Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with laboratory and wild type DENV-1 through -4. Wild type DENVs were more infectious to and transmissible by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for wild type DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.


2014 ◽  
Vol 281 (1792) ◽  
pp. 20141078 ◽  
Author(s):  
Karima Zouache ◽  
Albin Fontaine ◽  
Anubis Vega-Rua ◽  
Laurence Mousson ◽  
Jean-Michel Thiberge ◽  
...  

Interactions between pathogens and their insect vectors in nature are under the control of both genetic and non-genetic factors, yet most studies on mosquito vector competence for human pathogens are conducted in laboratory systems that do not consider genetic and/or environmental variability. Evaluating the risk of emergence of arthropod-borne viruses (arboviruses) of public health importance such as chikungunya virus (CHIKV) requires a more realistic appraisal of genetic and environmental contributions to vector competence. In particular, sources of variation do not necessarily act independently and may combine in the form of interactions. Here, we measured CHIKV transmission potential by the mosquito Aedes albopictus in all combinations of six worldwide vector populations, two virus strains and two ambient temperatures (20°C and 28°C). Overall, CHIKV transmission potential by Ae. albopictus strongly depended on the three-way combination of mosquito population, virus strain and temperature. Such genotype-by-genotype-by-environment (G × G × E) interactions question the relevance of vector competence studies conducted with a simpler set of conditions. Our results highlight the need to account for the complex interplay between vectors, pathogens and environmental factors to accurately assess the potential of vector-borne diseases to emerge.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Tereza Magalhaes ◽  
Alexis Robison ◽  
Michael Young ◽  
William Black ◽  
Brian Foy ◽  
...  

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.


2021 ◽  
Author(s):  
Caroline J. Stephenson ◽  
Heather Coatsworth ◽  
Seokyoung Kang ◽  
John A. Lednicky ◽  
Rhoel R. Dinglasan

AbstractDengue virus serotype 4 (DENV-4) circulated in Aedes aegypti in 2016 and 2017 in Florida in the absence of human index cases, compelling a full assessment of local mosquito vector competence and DENV-4 risk. To better understand DENV-4 transmission risk in Florida, we used an expanded suite of tests to measure and compare the vector competence of both an established colony of Ae. aegypti (Orlando strain [ORL]) and a field-derived colony from Collier County, Florida in 2018 (COL) for a Haitian DENV-4 human field isolate and a DENV-4 laboratory strain (Philippines H241). We immediately noted that ORL saliva-positivity was higher for the field versus laboratory DENV-4 strains. In a subsequent comparison with the recent COL mosquito colony we also observed significantly higher midgut susceptibility of COL and ORL for the Haitian DENV-4 field strain, and significantly higher saliva-positivity rate for COL, although overall saliva virus titers were similar between the two. These data point to a potential midgut infection barrier for the DENV-4 laboratory strain for both mosquito colonies and that the marked difference in transmission potential estimates hinge on virus-vector combinations. Our study highlights the importance of leveraging an expanded suite of testing methods with emphasis on utilizing local mosquito populations and field relevant dengue serotypes and strains to accurately estimate transmission risk in a given setting.ImportanceDENV-4 was found circulating in Florida (FL) Ae. aegypti mosquitoes in the absence of human index cases in the state (2016-2017). How DENV-4 was maintained locally is unclear, presenting a major gap in our understanding of DENV-4 public health risk. We determined the baseline arbovirus transmission potential of laboratory and field colonies of Ae. aegypti for both laboratory and field isolates of DENV-4. We observed high transmission potential of field populations of Ae. aegypti and evidence of higher vertical transmission of the DENV-4 field isolate, providing clues to the possible mechanism of undetected DENV-4 maintenance in the state. Our findings also move the field forward in the development of best practices for evaluating arbovirus vector competence, with evidence that transmission potential estimates vary depending on the mosquito-virus combinations. These data emphasize the poor suitability of lab-established virus strains and the high relevance of field-derived mosquito populations in estimating transmission risk.


Author(s):  
Samuel Clifford ◽  
Billy J Quilty ◽  
Timothy W Russell ◽  
Yang Liu ◽  
Yung-Wai Desmond Chan ◽  
...  

To mitigate SARS-CoV-2 transmission risks from international travellers, many countries currently use a combination of up to 14 days of self-quarantine on arrival and testing for active infection. We used a simulation model of air travellers arriving to the UK from the EU or the USA and the timing of their stages of infection to evaluate the ability of these strategies to reduce the risk of seeding community transmission. We find that a quarantine period of 8 days on arrival with a PCR test on day 7 (with a 1-day delay for test results) can reduce the number of infectious arrivals released into the community by a median 94% compared to a no quarantine, no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median 99% reduction). Shorter quarantine periods still can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (the mean incubation period) in quarantine and have at least one negative test before release are highly effective (e.g. a test on day 5 with release on day 6 results in a median 88% reduction in transmission potential). Without intervention, the current high prevalence in the US (40 per 10,000) results in a higher expected number of infectious arrivals per week (up to 23) compared to the EU (up to 12), despite an estimated 8 times lower volume of travel in July 2020. Requiring a 14-day quarantine period likely results in less than 1 infectious traveller each entering the UK per week from the EU and the USA (97.5th percentile). We also find that on arrival the transmission risk is highest from pre-symptomatic travellers; quarantine policies will shift this risk increasingly towards asymptomatic infections if eventually-symptomatic individuals self-isolate after the onset of symptoms. As passenger numbers recover, strategies to reduce the risk of re-introduction should be evaluated in the context of domestic SARS-CoV-2 incidence, preparedness to manage new outbreaks, and the economic and psychological impacts of quarantine.


2021 ◽  
Author(s):  
L. Stabile ◽  
A. Pacitto ◽  
A. Mikszewski ◽  
L. Morawska ◽  
G. Buonanno

AbstractReducing the transmission of SARS-CoV-2 through indoor air is the key challenge of the COVID-19 pandemic. Crowded indoor environments, such as schools, represent possible hotspots for virus transmission since the basic non-pharmaceutical mitigation measures applied so far (e.g. social distancing) do not eliminate the airborne transmission mode. There is widespread consensus that improved ventilation is needed to minimize the transmission potential of airborne viruses in schools, whether through mechanical systems or ad-hoc manual airing procedures in naturally ventilated buildings. However, there remains significant uncertainty surrounding exactly what ventilation rates are required, and how to best achieve these targets with limited time and resources. This paper uses a mass balance approach to quantify the ability of both mechanical ventilation and ad-hoc airing procedures to mitigate airborne transmission risk in the classroom environment. For naturally-ventilated classrooms, we propose a novel feedback control strategy using CO2 concentrations to continuously monitor and adjust the airing procedure. Our case studies show how such procedures can be applied in the real world to support the reopening of schools during the pandemic. Our results also show the inadequacy of relying on absolute CO2 concentration thresholds as the sole indicator of airborne transmission risk.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Constentin Dieme ◽  
Alexander T. Ciota ◽  
Laura D. Kramer

Abstract Background Mayaro virus (MAYV; Alphavirus, Togaviridae) is an emerging pathogen endemic in South American countries. The increase in intercontinental travel and tourism-based forest excursions has resulted in an increase in MAYV spread, with imported cases observed in Europe and North America. Intriguingly, no local transmission of MAYV has been reported outside South America, despite the presence of potential vectors. Methods We assessed the vector competence of Aedes albopictus from New York and Anopheles quadrimaculatus for MAYV. Results The results show that Ae. albopictus from New York and An. quadrimaculatus are competent vectors for MAYV. However, Ae. albopictus was more susceptible to infection. Transmission rates increased with time for both species, with rates of 37.16 and 64.44% for Ae. albopictus, and of 25.15 and 48.44% for An. quadrimaculatus, respectively, at 7 and 14 days post-infection. Conclusions Our results suggest there is a risk of further MAYV spread throughout the Americas and autochthonous transmission in the USA. Preventive measures, such as mosquito surveillance of MAYV, will be essential for early detection.


2017 ◽  
Author(s):  
Sadie J. Ryan ◽  
Colin J. Carlson ◽  
Erin A. Mordecai ◽  
Leah R. Johnson

AbstractForecasting the impacts of climate change on Aedes-borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3 – 34.0°C for Ae. aegypti; 19.9 – 29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.Author SummaryThe established scientific consensus indicates that climate change will severely exacerbate the risk and burden of Aedes-transmitted viruses, including dengue, chikungunya, Zika, and other significant threats to global health security. Here, we show more subtle impacts of climate change on transmission, caused primarily by differences between the more heat-tolerant Aedes aegypti and the more heat-limited Ae. albopictus. Within the next century, nearly a billion people could face their first exposure to viral transmission from either mosquito in the worst-case scenario, mainly in Europe and high-elevation tropical and subtropical regions. However, while year-round transmission potential from Ae. aegypti is likely to expand (particularly in south Asia and sub-Saharan Africa), Ae. albopictus transmission potential is likely to decline substantially in the tropics, marking a global shift towards seasonal risk as the tropics eventually become too hot for transmission by Ae. albopictus. Complete mitigation of climate change to a pre-industrial baseline may protect almost a billion people from arbovirus range expansions; however, middle-of-the-road mitigation could produce the greatest expansion in the potential for viral transmission by Ae. albopictus. In any scenario, mitigating climate change would shift the projected burden of both dengue and chikungunya (and potentially other Aedes transmitted viruses) from higher-income regions back onto the tropics, where transmission might otherwise begin to decline due to rising temperatures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divine Ekwem ◽  
Thomas A. Morrison ◽  
Richard Reeve ◽  
Jessica Enright ◽  
Joram Buza ◽  
...  

AbstractIn Africa, livestock are important to local and national economies, but their productivity is constrained by infectious diseases. Comprehensive information on livestock movements and contacts is required to devise appropriate disease control strategies; yet, understanding contact risk in systems where herds mix extensively, and where different pathogens can be transmitted at different spatial and temporal scales, remains a major challenge. We deployed Global Positioning System collars on cattle in 52 herds in a traditional agropastoral system in western Serengeti, Tanzania, to understand fine-scale movements and between-herd contacts, and to identify locations of greatest interaction between herds. We examined contact across spatiotemporal scales relevant to different disease transmission scenarios. Daily cattle movements increased with herd size and rainfall. Generally, contact between herds was greatest away from households, during periods with low rainfall and in locations close to dipping points. We demonstrate how movements and contacts affect the risk of disease spread. For example, transmission risk is relatively sensitive to the survival time of different pathogens in the environment, and less sensitive to transmission distance, at least over the range of the spatiotemporal definitions of contacts that we explored. We identify times and locations of greatest disease transmission potential and that could be targeted through tailored control strategies.


Sign in / Sign up

Export Citation Format

Share Document