scholarly journals Rapid Weight Loss, Central Obesity Improvement and Blood Glucose Reduction Are Associated with a Stronger Adaptive Immune Response Following COVID-19 mRNA Vaccine

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 79
Author(s):  
Mikiko Watanabe ◽  
Angela Balena ◽  
Davide Masi ◽  
Rossella Tozzi ◽  
Renata Risi ◽  
...  

Obesity is associated with a poor COVID-19 prognosis, and it seems associated with reduced humoral response to vaccination. Public health campaigns have advocated for weight loss in subjects with obesity, hoping to eliminate this risk. However, no evidence proves that weight loss leads to a better prognosis or a stronger immune response to vaccination. We aimed to investigate the impact of rapid weight loss on the adaptive immune response in subjects with morbid obesity. Twenty-one patients followed a hypocaloric, very-low-carbohydrate diet one week before to one week after the two mRNA vaccine doses. The diet’s safety and efficacy were assessed, and the adaptive humoral (anti-SARS CoV-2 S antibodies, Abs) and cell-mediated responses (IFNγ secretion on stimulation with two different SARS CoV-2 peptide mixes, IFNγ-1 and IFNγ-2) were evaluated. The patients lost ~10% of their body weight with metabolic improvement. A high baseline BMI correlated with a poor immune response (R −0.558, p = 0.013 for IFNγ-1; R −0.581, p = 0.009 for IFNγ-2; R −0.512, p = 0.018 for Abs). Furthermore, there was a correlation between weight loss and higher IFNγ-2 (R 0.471, p = 0.042), and between blood glucose reduction and higher IFNγ-1 (R 0.534, p = 0.019), maintained after weight loss and waist circumference reduction adjustment. Urate reduction correlated with higher Abs (R 0.552, p = 0.033). In conclusion, obesity is associated with a reduced adaptive response to a COVID-19 mRNA vaccine, and weight loss and metabolic improvement may reverse the effect.

2021 ◽  
Author(s):  
Yi Wang ◽  
Xiaoxia Wang ◽  
Laurence Don Wai Luu ◽  
Shaojin Chen ◽  
Jin Fu ◽  
...  

CoronaVac (Sinovac), an inactivated vaccine for SARS-CoV-2, has been widely used for immunization. However, analysis of the underlying molecular mechanisms driving CoronaVac-induced immunity is still limited. Here, we applied a systems biology approach to understand the mechanisms behind the adaptive immune response to CoronaVac in a cohort of 50 volunteers immunized with 2 doses of CoronaVac. Vaccination with CoronaVac led to an integrated immune response that included several effector arms of the adaptive immune system including specific IgM/IgG, humoral response and other immune response, as well as the innate immune system as shown by complement activation. Metabolites associated with immunity were also identified implicating the role of metabolites in the humoral response, complement activation and other immune response. Networks associated with the TCA cycle and amino acids metabolic pathways, such as phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glycine, serine and threonine metabolism were tightly coupled with immunity. Critically, we constructed a multifactorial response network (MRN) to analyze the underlying interactions and compared the signatures affected by CoronaVac immunization and SARS-CoV-2 infection to further identify immune signatures and related metabolic pathways altered by CoronaVac immunization. These results suggest that protective immunity against SARS-CoV-2 can be achieved via multiple mechanisms and highlights the utility of a systems biology approach in defining molecular correlates of protection to vaccination.


2021 ◽  
Author(s):  
Ricardo Wesley Alberca

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invades the host’s cells via the angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). ACE2 and TMPRSS2 molecules are highly expressed on the respiratory tract but are also expressed in other organs such as kidneys, heart, and intestine, which could partially explain the multiple organ infection, damage, and failure. During the COVID-19 disease course, patients may develop a dysregulation in the immune response, with an exacerbated production of pro-inflammatory molecules and hypercoagulation, which can collaborate to the increase in tissue damage and death. This chapter will cover general aspects of the innate and adaptive immune response during COVID-19, the impact of comorbidities on the immune response to SARS-CoV-2, and the immune response generated by COVID-19 vaccines.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 362-362 ◽  
Author(s):  
Demetri J. Merianos ◽  
Eleonor Tiblad ◽  
Pablo Laje ◽  
Masayuki Endo ◽  
Philip W. Zoltick ◽  
...  

Abstract In utero hematopoietic stem cell transplantation (IUHCT) is a potential alternative to postnatal HSCT for treatment of congenital hematologic disorders. We have recently documented in the murine model that, in contrast to the results for congenic IUHCT where 100% of recipients maintain permanent mixed hematopoietic chimerism, 70% of recipients of allogeneic IUHCT lose their chimerism by four weeks of age. We hypothesized that there was an adaptive immune barrier that was differentially activated in non-chimeric versus chimeric mice. To directly test this hypothesis, we compared the frequency of allospecific T-cells by the quantitative in vivo MLR assay in chimeric versus non-chimeric mice, as well as immunized and non-injected control mice. After IUHCT of GFP+ B6 BM cells into E14 Balb/c fetuses, lymphocytes were harvested from 4 week old Balb/c recipients, CFSE stained, and injected into F1 recipients, and F1 spleens were then FACS analyzed for frequency of alloreactive T cells at 96hrs. The frequency of alloreactive T cells in chimeric mice was 2.034 ± 0.562 percent of CD4+, CFSE+ input lymphocytes as compared to 6.323 ± 1.185 percent in non-chimeric mice (p=0.010). We also compared allospecific humoral response in the same groups by flow cytometric assay for anti-donor IgG. Serum was isolated from 4 week old Balb/c IUHCT recipients and incubated with B6 target cells and anti-IgG secondary antibody for detection of alloantibodies. Anti-IgG immunofluorescence was increased 9.512 ± 3.183 fold as compared to 1.097 ± 0.113 fold over controls in non-chimeric and chimeric mice respectively (p=0.013), and showed dose dependence with regard to serum concentration. These results confirm that loss of chimerism after allogeneic IUHCT in the murine model is associated with activation of an allospecific adaptive immune response. We further hypothesized that the source of immune activation was the mature maternal immune system, rather than the immature fetal immune system. To test this hypothesis, we performed IUHCT and used non-injected foster moms as the source of breast milk. Remarkably, we found that 17/17 pups raised by foster moms maintained long-term (> 4 months) donor cell chimerism, as compared to 15/52 pups raised by injected moms (p<0.0001). We then analyzed the injected moms for the presence of alloantibodies at P1 (one week after IUHCT), P8 and P28. At P1, 10/10 were negative for the presence of alloantibodies, while 8/10 were positive for the presence of alloantibodies at P8 as well as P28 (p=0.0007). We have subsequently identified a positive correlation between the number of aborted fetuses and the magnitude of the maternal humoral response (correlation coefficient=0.6, n=15, p=0.018). In fact, the absence of a maternal anti-donor humoral response is only observed in pregnancies with no aborted fetuses and the injected pups from these pregnancies are all chimeric. These results indicate that IUHCT at E14 in the murine model results in maternal immunization through fetal loss and production of alloantibodies which are then transferred in breast milk to pups, triggering an adaptive immune response and resulting in loss of chimerism in 70% of pups by four weeks of age. These findings explain the apparent contradiction of activation of an alloimmune response by IUHCT in the pre-immune fetal recipient and once again validate the concept of fetal immune tolerance as permissive for allogeneic engraftment after IUHCT. The importance of this mechanism of loss of chimerism after IUHCT in large animal or clinical settings is unknown and will be the focus of future investigations. In addition, our observations may have broad implications for autoimmune disease and the immune consequences of maternal-fetal cellular trafficking.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matheus B. Carneiro ◽  
Nathan C. Peters

Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.


2014 ◽  
Vol 11 (92) ◽  
pp. 20131083 ◽  
Author(s):  
Andreas Handel ◽  
Victoria Akin ◽  
Sergei S. Pilyugin ◽  
Veronika Zarnitsyna ◽  
Rustom Antia

Budding viruses face a trade-off: virions need to efficiently attach to and enter uninfected cells while newly generated virions need to efficiently detach from infected cells. The right balance between attachment and detachment—the right amount of stickiness—is needed for maximum fitness. Here, we design and analyse a mathematical model to study in detail the impact of attachment and detachment rates on virus fitness. We apply our model to influenza, where stickiness is determined by a balance of the haemagglutinin (HA) and neuraminidase (NA) proteins. We investigate how drugs, the adaptive immune response and vaccines impact influenza stickiness and fitness. Our model suggests that the location in the ‘stickiness landscape’ of the virus determines how well interventions such as drugs or vaccines are expected to work. We discuss why hypothetical NA enhancer drugs might occasionally perform better than the currently available NA inhibitors in reducing virus fitness. We show that an increased antibody or T-cell-mediated immune response leads to maximum fitness at higher stickiness. We further show that antibody-based vaccines targeting mainly HA or NA, which leads to a shift in stickiness, might reduce virus fitness above what can be achieved by the direct immunological action of the vaccine. Overall, our findings provide potentially useful conceptual insights for future vaccine and drug development and can be applied to other budding viruses beyond influenza.


2021 ◽  
Vol 41 (11) ◽  
pp. 407-414
Author(s):  
Michelle Møhlenberg ◽  
Ida Monrad ◽  
Line K. Vibholm ◽  
Stine S.F. Nielsen ◽  
Giacomo Schmidt Frattari ◽  
...  

2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Daniel B. Reeves ◽  
Christopher W. Peterson ◽  
Hans-Peter Kiem ◽  
Joshua T. Schiffer

ABSTRACT Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the “Berlin patient” remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martin Kongsbak-Wismann ◽  
Fatima A. H. Al-Jaberi ◽  
Jonas Damgård Schmidt ◽  
Mustafa Ghanizada ◽  
Cecilie Bo Hansen ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic has severely impacted daily life all over the world. Any measures to slow down the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to decrease disease severity are highly requested. Recent studies have reported inverse correlations between plasma levels of vitamin D and susceptibility to SARS-CoV-2 infection and COVID-19 severity. Therefore, it has been proposed to supplement the general population with vitamin D to reduce the impact of COVID-19. However, by studying the course of COVID-19 and the immune response against SARS-CoV-2 in a family with a mutated, non-functional vitamin D receptor, we here demonstrate that vitamin D signaling was dispensable for mounting an efficient adaptive immune response against SARS-CoV-2 in this family. Although these observations might not directly be transferred to the general population, they question a central role of vitamin D in the generation of adaptive immunity against SARS-CoV-2.


2014 ◽  
Vol 3 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Adrian Egli ◽  
Deanna M Santer ◽  
Daire O’Shea ◽  
D Lorne Tyrrell ◽  
Michael Houghton

Sign in / Sign up

Export Citation Format

Share Document