scholarly journals Quantitative Evaluation Method for Landscape Color of Water with Suspended Sediment

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1042
Author(s):  
Mao Ye ◽  
Ran Li ◽  
Weimin Tu ◽  
Jialing Liao ◽  
Xunchi Pu

Landscape water is an important part of natural landscape, and a reasonable assessment of water landscape color is the basis for scientifically evaluating the quality of water landscape. To evaluate water landscape color with different concentrations of sediment objectively and quantitatively, a method of evaluating water landscape color based on hyperspectral technology is proposed to calculate water landscape color. The color spectrum calculation model of the water landscape color was constructed using the Commission Internationale de L’Eclairage spectrum three stimulus system (CIE-XYZ) calculation method and the response relationship among water reflectance, water depth, and sediment concentration. Under the conditions of eliminating as many external factors as possible, using a hyperspectral instrument to measure the reflectance of sediment and water, the response relationship between water depth and sediment concentration and water reflectance is calculated. Water depth and sediment concentration, which did not appear previously, were verified by experiments that proved the reliability of the water landscape color spectrum calculation model. By using different absolute value of chromatic coordinates in the international CIE-XYZ calculation method, a formula for determining the difference in sediment concentration for water landscape color was defined, and the quantitative evaluation method of landscape color of sand-laden water was established. In this research, we found that the predicted water landscape color, quantified by the color spectrum calculation model, is basically consistent with the actual color of landscape water and is basically in line with actual observation about significant difference assessment, which demonstrated the accuracy and reliability of the model. Hence, this research provides a scientific basis for the establishment of other water quality factors to evaluate water color, which makes it possible to quantify the color of the water landscape based on the establishment the color spectrum calculation model.


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;



2018 ◽  
Vol 768 ◽  
pp. 293-305 ◽  
Author(s):  
Chun Zhi Zhao ◽  
Yi Liu ◽  
Shi Wei Ren ◽  
Jiang Quan

along with the rapid development of commercial concrete industry and the continuous growth of concrete demand, the commercial concrete production has brought large energy consumption and mineral resource consumption; cement calcination and direct/indirect energy consumption within the boundary of ready-mixed concrete system have become the main source of concrete greenhouse gas. This paper mainly settles key problems such as boundary definition, data collection, calculation model, data acceptance/rejection and data calculation method concerned with concrete carbon emission calculation, establishes the national uniform concrete carbon emission calculation method and emission factor within the same cultural boundary, and provides theoretical and data calculation basis for determining the reference value and grade of concrete carbon emission. As for other products, the carbon emission of unit product may also be calculated by reference to this paper; therefore, inherent carbon emission data of buildings are accumulated, providing quantized data support for taking measures to reduce the carbon emission intensity.



2019 ◽  
Vol 15 (2) ◽  
pp. 523-536
Author(s):  
Jinliang Liu ◽  
Yanmin Jia ◽  
Guanhua Zhang ◽  
Jiawei Wang

Purpose The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams. Design/methodology/approach Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated. Findings The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative. Originality/value The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.



1986 ◽  
Vol 1 (20) ◽  
pp. 67
Author(s):  
J. Van de Graaff ◽  
R.C. Steijn

The sediment transport due to waves and currents depends on the distribution of sediment concentration and on the distribution of the velocity over the water depth. Our knowledge of both phenomena for practical applications is still rather poor. Some results of wave flume tests concerning the distribution of sediment concentrations due to wave action will be discussed. It turns out that the sediment size of the bottom material has a rather unexpected effect hereupon. With respect to the velocity distribution only some qualitative remarks can be made at the moment.



1984 ◽  
Vol 1 (19) ◽  
pp. 91 ◽  
Author(s):  
Ichiro Deguchi ◽  
Toru Sawaragi

Time and spatial variations of sediment concentration of both bed load and suspended load in the process of two-dimensional beach deformation were investigated experimentally. At the same time, the relation between the velocities of water-particle and sediment migration was analyzed theoretically. By using those results,a net rate of on-offshore sediment_ transport in the process of two-dimensional model beach deformation qf was calculated on the basis of sediment flux. It is found that Qf coincides fairly well with .the net rate of on-offshore sediment transport calculated from the change of water depth.



2020 ◽  
Vol 38 (4) ◽  
pp. 841-866
Author(s):  
Qiulin Guo ◽  
Xiaoming Chen ◽  
Xiaoxue Liuzhuang ◽  
Zhi Yang ◽  
Man Zheng ◽  
...  

The widely distributed, thick Chang 7 Shale is the richest shale oil formation in China. A calculation method for the evaporative hydrocarbon recovery coefficient based on formation volume factor is proposed considering the correction of heterogeneity-based total organic carbon differences to improve the adsorbed oil calculation method, and light hydrocarbon evaporative sampling losses, which can make mobile and total oil calculations more accurate. The adsorbed oil, S1 evaporative loss, total oil yield, and movable oil yield of 200 shale samples from the Chang 7 Member were calculated using the new methods. Results show that S1 evaporative loss accounts for 29% of S1, total oil yield is 3.5 times S1, and movable oil yield accounts for 37% of total oil yield. Based on the calculated total oil yield and movable oil yield results, the relationships among total oil yield, movable oil yield, and total organic carbon of the Chang 7 were established yielding total oil yield and movable oil yield estimates of 11.12 × 109 t and 4.01 × 109 t, respectively, revealing its tremendous shale exploration potential.



2019 ◽  
Vol 7 (8) ◽  
pp. 257
Author(s):  
Xueyuan Zhu ◽  
Qinglong Hao ◽  
Jie Zhang

Anchor penetration is an important issue involved in the study of submarine pipeline damage accidents. To explore the penetration of a ship’s anchor under certain conditions, this study investigated the motion and force of an anchor and formulated a calculation method for the bottoming speed of an anchor. Meanwhile, the depth of anchor penetration was calculated under different conditions according to bottoming speed through programming. Finally, the reliability of the calculation method for the penetration depth was verified by comparing the actual measurement and the numerical simulation. On the basis of the findings, the calculation results were further analyzed, and conclusions were derived regarding the relationship between anchor mass, the horizontal projected area of the anchor, the anchor height on the water surface, and water depth. The conclusions provide suggestions for the application of anchor penetration in terms of seabed depth with certain reference values.



2013 ◽  
Vol 368-370 ◽  
pp. 968-975 ◽  
Author(s):  
Yu Feng Gan ◽  
Xian Ming Qin ◽  
Hong Guo

To form a carbon footprint calculation method for cement manufacture, a detail analysis is conducted on the essential factors of the manufacturing process of the cement industry in Fujian Province. From the analysis result, the calculation model and calculation process for cement manufacture carbon footprint is formed to provide a scientific basis for the carbon footprint calculation.



Sign in / Sign up

Export Citation Format

Share Document