scholarly journals The Use of River Flow Discharge and Sediment Load for Multi-Objective Calibration of SWAT Based on the Bayesian Inference

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1662
Author(s):  
Qin-Bo Cheng ◽  
Xi Chen ◽  
Jiao Wang ◽  
Zhi-Cai Zhang ◽  
Run-Run Zhang ◽  
...  

The soil and water assessment tool (SWAT) is widely used to quantify the spatial and temporal patterns of sediment loads for watershed-scale management of sediment and nonpoint-source pollutants. However few studies considered the trade-off between flow and sediment objectives during model calibration processes. This study proposes a new multi-objective calibration method that incorporates both flow and sediment observed information into a likelihood function based on the Bayesian inference. For comparison, two likelihood functions, i.e., the Nash–Sutcliffe efficiency coefficient (NSE) approach that assumes model residuals follow the Gaussian distribution, and the BC-GED approach that assumes model residuals after Box–Cox transformation (BC) follow the generalized error distribution (GED), are applied for calibrating the flow and sediment parameters of SWAT with the water balance model and the variable source area concept (SWAT-WB-VSA) in the Baocun watershed, Eastern China. Compared with the single-objective method, the multi-objective approach improves the performance of sediment simulations without significantly impairing the performance of flow simulations, and reduces the uncertainty of flow parameters, especially flow concentration parameters. With the NSE approach, SWAT-WB-VSA captures extreme flood events well, but fails to mimic low values of river discharge and sediment load, possibly because the NSE approach is an informal likelihood function, and puts greater emphasis on high values. By contrast, the BC-GED approach approximates a formal likelihood function, and balances consideration of the high- and low- values. As a result, inferred results of the BC-GED method are more reasonable and consistent with the field survey results and previous related-studies. This method even discriminates the nonerodible characteristic of main channels.

2016 ◽  
Vol 17 (5) ◽  
pp. 1489-1516 ◽  
Author(s):  
Joel Arnault ◽  
Sven Wagner ◽  
Thomas Rummler ◽  
Benjamin Fersch ◽  
Jan Bliefernicht ◽  
...  

Abstract The analysis of land–atmosphere feedbacks requires detailed representation of land processes in atmospheric models. The focus here is on runoff–infiltration partitioning and resolved overland flow. In the standard version of WRF, runoff–infiltration partitioning is described as a purely vertical process. In WRF-Hydro, runoff is enhanced with lateral water flows. The study region is the Sissili catchment (12 800 km2) in West Africa, and the study period is from March 2003 to February 2004. The WRF setup here includes an outer and inner domain at 10- and 2-km resolution covering the West Africa and Sissili regions, respectively. In this WRF-Hydro setup, the inner domain is coupled with a subgrid at 500-m resolution to compute overland and river flow. Model results are compared with TRMM precipitation, model tree ensemble (MTE) evapotranspiration, Climate Change Initiative (CCI) soil moisture, CRU temperature, and streamflow observation. The role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks is addressed with a sensitivity analysis of WRF results to the runoff–infiltration partitioning parameter and a comparison between WRF and WRF-Hydro results, respectively. In the outer domain, precipitation is sensitive to runoff–infiltration partitioning at the scale of the Sissili area (~100 × 100 km2), but not of area A (500 × 2500 km2). In the inner domain, where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally resolved overland flow here clearly increases infiltration and evapotranspiration at the beginning of the wet season when soils are still dry. The WRF-Hydro setup presented here shows potential for joint atmospheric and terrestrial water balance studies and reproduces observed daily discharge with a Nash–Sutcliffe model efficiency coefficient of 0.43.


2008 ◽  
Vol 5 (6) ◽  
pp. 3005-3032 ◽  
Author(s):  
J.-P. Suen

Abstract. Observed increases in the Earth's surface temperature bring with them associated changes in precipitation and atmospheric moisture that consequentially alter river flow regimes. This paper uses the Indicators of Hydrologic Alteration approach to examine climate-induced flow regime changes that can potentially affect freshwater ecosystems. Analyses of the annual extreme water conditions at 23 gauging stations throughout Taiwan reveal large alterations in recent years; extreme flood and drought events were more frequent in the period after 1991 than from 1961–1990, and the frequency and duration of the flood and drought events also show high fluctuation. Climate change forecasts suggest that such flow regime alterations are going to continue into the foreseeable future. Aquatic organisms not only feel the effects of anthropogenic damage to river systems, but they also face on-going threats of thermal and flow regime alterations associated with climate change. This paper calls attention to the issue, so that water resources managers can take precautionary measures that reduce the cumulative effects from anthropogenic influence and changing climate conditions.


2017 ◽  
Author(s):  
Cherry May R. Mateo ◽  
Dai Yamazaki ◽  
Hyungjun Kim ◽  
Adisorn Champathong ◽  
Jai Vaze ◽  
...  

Abstract. Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe Efficiency coefficient decreased by more than 35 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions in finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings are universal and can be extended to global-scale simulations. These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.


2016 ◽  
Vol 9 (1) ◽  
pp. 50-61
Author(s):  
Teuku Ferijal ◽  
Mustafril Mustafril ◽  
Dewi Sri Jayanti

Abstrak. Perubahan iklim yang menyebabkan perubahan karakteristik curah hujan berdampak pada aliran sungai. Penelitian ini bertujuan untuk menganalisa dampak perubahan iklim terhadap debit andalan. Data-data yang digunakan dalam penelitian ini adalah data klimatologi dan hidrologi yang semuanya dikumpulkan dari stasiun-stasiun yang ada dalam wilayah penelitian yaitu DAS Krueng Aceh. Model kesetimbangan air variable infiltration capacity digunakan dalam penelitian ini untuk menghitung debit sungai harian berdasarkan data curah hujan dan evapotranspirasi harian. Hasil analisa menunjukkan bahwa suhu udara tahunan rata-rata DAS Krueng Aceh telah mengalami peningkatan yang drastis sebesar 0,6°C sejak tahun 2001. Perubahan tersebut juga diikuti dengan adanya tren peningkatan curah hujan (22%) pada bulan-bulan basah (November-Januari) serta penurunan curah hujan (26%) pada bulan-bulan kering (Mei-Agustus). Dampak dari perubahan iklim tersebut adalah terjadinya penurunan debit sungai Krueng Aceh yang ditandai semakin meningkatnya kemungkinan debit aliran lebih kecil dari 18,77 m3/s dan menurunkan debit andalan terutama pada periode April-Desember sebesar 23,5%.  Impact of Climate Change on Dependable Discharge in the Krueng Aceh River Abstract. Climate changes altering precipitation characteristic bring impact on streamflow. This research aims to analyze impact of climate changes on dependable discharge. Climatological and hydrological data were collected from stations within Krueng Aceh Watershed. Variable infiltration capacity water balance model was applied to calculate daily streamflow base on daily precipitation and evapotranspiration. The results suggested that annual air temperature of Krueng Aceh Watershed has been squally increasing 0.6°C since 2001. The changes were also detected on monthly precipitation i.e. a 22% increase in wet period (November-January) and a 26% decrease in dry period (Mei-August). The changes have impacted the Krueng Aceh River flow by increasing possibility of flow lower than 18.77m3/s and decreasing dependable discharge by 23.5% for period of April-December.


2021 ◽  
Author(s):  
Pilar Llorens ◽  
Sebastián González ◽  
Jérôme Latron ◽  
Cesc Múrria ◽  
Núria Bonada ◽  
...  

<p>Temporary rivers, characterized by shifts between flowing water, disconnected pools and dry periods, represent over 50% of the world’s river network and future climatic projections suggest their increase. These rivers are understudied, especially when only disconnected pools remain, because gauging stations or hydrological models do not inform of what happens after the cessation of flow. In addition, most of biological indicators for water quality are designed for flowing waters and their adequacy for temporary rivers is uncertain.</p><p>The development of biological metrics adequate for the assessment of disconnected pools is difficult, because the high species replacement during and following flow cessation. For this reason, one hydrological variable of paramount importance for the assessment of ecological quality of disconected pools is the time since disconnection from the river flow.</p><p>The objective of our work is to present a methodology to estimate the time since disconnection of pools from the river flow. This methodology, following the Gonfiantini (1986) model, is based on the sampling of water stable isotopes in disconnected pools. For pools disconnected from the groundwater, knowing the isotopic modification of the water in time due to evaporation, allows to estimate the relative volume of water evaporated since the pool has been disconnected. However, this approach gets complicated when pools have relevant rainfall inputs or exchanges with groundwater.</p><p>Within the Vallcebre research area (42º12’N and 1º49’E), two artificial pools, one covered with a transparent lid to prevent the input of rainfall and another uncovered, were installed to validate this methodology in controlled conditions. From July to November 2020, water volume of these pools were weekly measured and sampled for isotopic analysis. In parallel, meteorological variables were monitored and rainfall was also sampled for water stable isotopes.</p><p>To develop and validate an operational methodology for estimating the time since disconnection, we first calculated the relative amount of evaporated water based on the variations of isotopic composition of the covered pool samples, and estimated the time since disconnection (for a given natural pool) using the potential evaporation calculated from the meteorological data. For the uncovered pool, the information of amount and isotopic composition of rainfall was added in a mass balance model. Additionally, the same estimations were calculated with standard information (i.e. the meteorological data obtained from the National Meteorological Service and precipitation isotopes data from the Global Network of Isotopes in Precipitation (GNIP) of the International Atomic Energy Agency). Finally, measured volumes changes in pools, were used to assess the limitations of the operational methodology and the sensitivity of the results to meteorological conditions.</p><p>Our approach suggests that changes in isotopic composition can be a reliable method to estimate time since disconnection of pools in temporary rivers to better assess their ecological quality.</p>


Author(s):  

<em>Abstract.</em>—Although many hydroelectric dams have fishways for upstream passage of migratory fish, passage delays often occur at these sites. Migrational delay may affect fish detrimentally in several ways, including depletion of energy reserves, suboptimal arrival timing at spawning sites, and prolonged exposure to hazardous conditions at the face of dams. We applied time-to-event analyses to passage times of radio-tagged adult Chinook salmon <em>Oncorhynchus tshawytscha </em>at four dams on the lower Columbia River, where many fish require several days to pass each dam. The analysis allowed us to determine instantaneous passage rates in response to fluctuating river conditions. By relating variability in passage rate to the predictor variables river temperature, river flow, and fish size, we determined the relative contribution of various factors to the passage time of migrating fish. We fit the model by maximizing the likelihood function that incorporated information from individuals rather than aggregated groups of fish. We used Akaike’s Information Criterion to distinguish among several competing models, each of which used a different predictor variable. We found that daytime passage rates were significantly greater than nighttime passage rates. Also, the influence of river flow, river temperature, and fish length on passage rates varied at the four dams. However, when a factor had a significant influence on passage time, the direction of the relationship was consistent across dams: river flow and fish length were positively related to passage time (greater values led to longer passage time), and river temperature was negatively related. This method is easily adaptable to study passage time of any fish population facing a broad range of obstacles to migration, whether natural or man-made.


2019 ◽  
Vol 50 (5) ◽  
pp. 1189-1201
Author(s):  
Chesheng Zhan ◽  
Jian Han ◽  
Lei Zou ◽  
Fubao Sun ◽  
Tiejun Wang

Abstract Evaluation criteria play a key role in assessing the performances of hydrological models. Most previous criteria are based on the standard least square method, which assumes model residuals to be homoscedastic and is, therefore, not suitable for assessing cases with heteroscedastic residuals. Here, we compared a heteroscedastic and symmetric efficiency (HSE) criterion with the Nash–Sutcliffe efficiency (NSE) and the heteroscedastic maximum-likelihood estimator (HMLE) by running a monthly water balance model with four parameters (i.e., the abcd model) in 138 basins located in the continental United States derived from the Model Parameter Estimation Experiment dataset. The results show that compared to the NSE, the HSE and HMLE are both more effective for stabilizing variance and producing more uniform performances with flow magnitude, and the latter is slightly more effective than the former on stabilizing the residual heteroscedasticity, with the aid of an additional parameter.


2019 ◽  
Vol 10 (1) ◽  
pp. 251 ◽  
Author(s):  
Gustavo R. Zavala ◽  
José García-Nieto ◽  
Antonio J. Nebro

The efficient calibration of hydrologic models allows experts to evaluate past events in river basins, as well as to describe new scenarios and predict possible future floodings. A difficulty in this context is the need to adjust a large number of parameters in the model to reduce prediction errors. In this work, we address this issue with two complementary contributions. First, we propose a new lumped rainfall-runoff hydrologic model—called Qom—which is featured by a limited set of continuous decision variables associated with soil moisture and direct runoff. Qom allows to separate and quantify the volume of losses and excesses of the rainwater falling in a hydrographic basin, while a Clark’s model is used to determine output hydrograms. Second, we apply a multi-objective optimization approach to find accurate calibrations of the model in a systematic and automatic way. The idea is to formulate the process as a bi-objective optimization problem where the Nash-Sutcliffe Efficiency coefficient and percent bias have to be minimized, and to combine the results found by a set of metaheuristics used to solve it. For validation purposes, we apply our proposal in six hydrographic scenarios, comprising river basins located in Spain, USA, Brazil and Argentina. The proposed approach is shown to minimize prediction errors of simulated streamflows with regards to those observed in these real-world basins.


2018 ◽  
Vol 40 ◽  
pp. 06029
Author(s):  
Luiz Henrique Maldonado ◽  
Daniel Firmo Kazay ◽  
Elio Emanuel Romero Lopez

The estimation of the uncertainty associated with stage-discharge relations is a challenge to the hydrologists. Bayesian inference with likelihood estimator is a promissory approach. The choice of the likelihood function has an important impact on the capability of the model to represent the residues. This paper aims evaluate two likelihood functions with DREAM algorithm to estimate specific non-unique stage-discharge rating curves: normal likelihood function and Laplace likelihood function. The result of BaRatin is also discussed. The MCMC of the DREAM and the BaRatin algorithm have been compared and its results seem consistent for the studied case. The Laplace likelihood function presented as good results as normal likelihood function for the residues. Other gauging stations should be evaluated to attend more general conclusions.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 554
Author(s):  
Huiping Ji ◽  
Gonghuan Fang ◽  
Jing Yang ◽  
Yaning Chen

Understanding glacio-hydrological processes is crucial to water resources management, especially under increasing global warming. However, data scarcity makes it challenging to quantify the contribution of glacial melt to streamflow in highly glacierized catchments such as those in the Tienshan Mountains. This study aims to investigate the glacio-hydrological processes in the SaryDjaz-Kumaric River (SDKR) basin in Central Asia by integrating a degree-day glacier melt algorithm into the macro-scale hydrological Soil and Water Assessment Tool (SWAT) model. To deal with data scarcity in the alpine area, a multi-objective sensitivity analysis and a multi-objective calibration procedure were used to take advantage of all aspects of streamflow. Three objective functions, i.e., the Nash–Sutcliffe efficiency coefficient of logarithms (LogNS), the water balance index (WBI), and the mean absolute relative difference (MARD), were considered. Results show that glacier and snow melt-related parameters are generally sensitive to all three objective functions. Compared to the original SWAT model, simulations with a glacier module match fairly well to the observed streamflow, with the Nash–Sutcliffe efficiency coefficient (NS) and R2 approaching 0.82 and an absolute percentage bias less than 1%. Glacier melt contribution to runoff is 30–48% during the simulation period. The approach of combining multi-objective sensitivity analysis and optimization is an efficient way to identify important hydrological processes and recharge characteristics in highly glacierized catchments.


Sign in / Sign up

Export Citation Format

Share Document