scholarly journals Characterising Recycled Organic and Mineral Materials for Use as Filter Media in Biofiltration Systems

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1074
Author(s):  
Steven A Lucas ◽  
Charles CC Lee ◽  
Eric Love

Filter media (FM) sourced from recycled organic and mineral materials offer an effective and low cost means of treating urban stormwater. Using recycled materials rather than the increasingly scarce source of virgin materials (typically sandy loam soil) can ensure a sustainable and long-term economy and environment. This paper presents the results from the laboratory analysis and mathematical modelling to highlight the performance of recycled organic and mineral materials in removing nutrients and metals from stormwater. The analysis included the physical and chemical characterisation of particle size distribution, saturated hydraulic conductivity (Ksat), bulk density, effective cation exchange capacity, and pollutant removal performance. The design mixes (DM), comprising a combination of organic and mineral materials, were characterised and used to develop/derive the modelling design within the Model for Urban Stormwater Improvement Conceptualisation (MUSIC v6). Comparison is made to the Adoption Guidelines for Stormwater Biofiltration Systems—Summary Report which were based on the Facility for Advancing Water Biofiltration (FAWB) guidelines to assist in the development of biofiltration systems, including the planning, design, construction, and operation of those systems. An observed outcome from over two decades of biofiltration guideline development has been the exclusion of alternative biofilter materials due to claims of excessive leaching. Results from this study indicate that high nutrient and metal removal rates can be achieved over a range of hydraulic conductivities using design mixes of recycled organic and mineral materials that have a demonstrated equivalence to existing guideline specifications.

Author(s):  
Steven Lucas ◽  
Charles CC Lee ◽  
Eric Love

Filter Media (FM) sourced from recycled organic and mineral material offers a low cost and effective means of treating urban stormwater. Using recycled materials rather than from an increasingly scarce source of virgin materials (typically sandy loam soil) can ensure a sustainable long-term economy and environment. This paper presents results from the laboratory analysis and mathematical modeling to highlight the performance of recycled organic and mineral material in removing nutrients and metals from stormwater. Analysis included physical and chemical characterisation such as particle size distribution, saturated hydraulic conductivity (Ksat), bulk density, effective cation exchange capacity, and pollutant removal performance. Design mixes (DM), comprising a combination of organic and mineral materials, were characterised and used to develop/derive modelling design within the Model for Urban Stormwater Improvement Conceptualisation (MUSIC v6) [1]. Comparison is made to the Adoption Guidelines for Stormwater Biofiltration Systems - Summary Report [2] which were based on the Facility for Advancing Water Biofiltration (FAWB) guidelines to assist in the development of biofiltration systems, including the planning, design, construction and operation of those systems. An observed outcome from over two decades of biofiltration guideline development has been the exclusion of alternative biofilter materials due to claims of excessive leaching. Results from this study indicate that high nutrient and metal removal rates can be achieved over a range of hydraulic conductivities using design mixes of recycled organic and mineral materials that have a demonstrated equivalence to existing guideline specifications.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 115-122 ◽  
Author(s):  
S. K. Ouki ◽  
M. Kavannagh

This paper assesses the potential of natural zeolite utilization as a low-cost in exchange material for heavy metals removal. Two natural zeolites, clinoptilolite and chabazite, have been evaluated with respect to their selectivity and removal performance for the treatment of effluents contaminated with mixed heavy metals (Pb, Cd, Cu, Zn, Cr, Ni and Co). The effects of relevant parameters such as chemical treatment, metals concentration, pH, and presence of competing ions were examined. The results showed that the received zeolites contained exchangeable K, Ca and Na ions, but exposing them to concentrated NaCl solutions converted them to a homoionic state in the Na form which improved their exchange capacity. Clinoptilolite and chabazite exhibited different selectivity profiles for all metals studied except for Pb for which both zeolites performed exceptionally well. The results also showed that chabazite exchange capacity is superior to that of clinoptilolite mainly due to the higher Al substitution of Si which provides chabazite with a negative framework favourable to higher exchange capability. The pH was found to have an effect on metal removal as it can influence both the character of the exchanging ions and the zeolite itself. Overall, the removal mechanism was controlled by ion exchange and precipitation was proven negligible.


Author(s):  
Suman Meena ◽  
Narendra Swaroop ◽  
Joy Dawson

A field experiment was conducted during <italic>Kharif</italic> season 2014 at the Research farm of Soil Science Allahabad School of Agriculture, laid out in randomized block design on sandy loam soil, containing sand 62.71%, silt 23.10% and clay 14.19% (Inceptisols). It was observed that for post harvest soil properties in treatment N<sub>20</sub>+ FYM @ 10 t ha<sup>−1</sup> and <italic>Rhizobium</italic> P<sub>40</sub>K<sub>40</sub> were improved significantly due to integrated use of inputs. Organic carbon-0.75%, available nitrogen- 333.23 kg ha<sup>−1</sup>, phosphorus- 34.58 kg ha<sup>−1</sup>, potassium -205.83 kg ha<sup>−1</sup>, pore space -50.80 %, pH -6.80 were found to be significant and bulk density -1.07 Mgm<sup>−3</sup>, particle density -2.62 Mgm<sup>−3</sup>, EC at 27°C -0.24 dSm<sup>−1</sup> were found to be non-significantly improved in this treatment.


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Julie Guckenberger Price ◽  
Amy N. Wright ◽  
Kenneth M. Tilt ◽  
Robert L. Boyd

The need for reliable planting techniques that encourage posttransplant root growth in adverse conditions has prompted research into planting above soil grade (above-grade). Container-grown Morella cerifera (L.) Small (syn. Myrica cerifera L.) (wax myrtle), Illicium floridanum Ellis (Florida anise tree), and Kalmia latifolia L. (mountain laurel) plants were planted in Horhizotrons (root observation chambers) in a greenhouse in Auburn, AL, on 1 Mar. 2006, 6 June 2006, and 3 Jan. 2007, respectively. The experiment was repeated with all three species being planted 18 June 2007. Horhizotrons contained four glass quadrants extending away from the root ball providing a nondestructive method for measuring root growth of the same plant into different rhizosphere conditions. Each quadrant was filled with a native sandy loam soil in the lower 10 cm. The upper 10 cm of the quadrants were filled randomly with: 1) milled pine bark (PB); 2) peat (P); 3) cotton gin compost (CGC); or 4) more native soil with no organic matter (NOM). Horizontal root lengths (HRL, length measured parallel to the ground from the root ball to the root tip) of the five longest roots visible along each side of a quadrant were measured weekly for M. cerifera and I. floridanum and biweekly for K. latifolia. These measurements represented lateral growth and penetration of roots into surrounding substrates on transplanting. When roots of a species neared the end of the quadrant, the experiment was ended for that species. M. cerifera had the fastest rate of lateral root growth followed by I. floridanum and then by K. latifolia. In most cases, roots grew initially into the organic matter rather than the soil when organic matter was present. In general, HRL and root dry weight (RDW) of I. floridanum and K. latifolia were greatest in PB and P, whereas for M. cerifera, these were greatest in P. Differences in root growth among substrates were not as pronounced for M. cerifera as for the other species, perhaps as a result of its rapid increase in HRL. Increased root growth in PB and P may be attributed to the ideal physical and chemical properties of these substrates. Results suggest that planting above soil grade with organic matter may increase posttransplant root growth compared with planting at grade with no organic matter.


2016 ◽  
Vol 78 (4-2) ◽  
Author(s):  
Indriatmoko Indriatmoko ◽  
Raden Pandoe Prahoro

Floating Treatment Wetlands (FTWs) are considered the most applicable and cost effective instrument for aquatic pollutant removal. This aquaponic–based bioremediation has become a potential alternative solution since inorganic (physical and chemical) treatment is seen to be ineffective for large–scale polluted objects. Numerous investigations have proved that FTWs are potential to decrease major pollutant concentration in water e.g., nitrogen, phosphate, as well as heavy metals. This treatment is applicable by using different macrophytes species. Depending on its pollutant target, the use of macrophytes will vary to its pollutant which will be removed. There are only limited reports available relating to application of macrophytes as pollutant removal applied in Indonesia. Citarum watershed is known as one of the most polluted aquatic area in Indonesia. It urgently needs a suitable method of water pollutant removal in this area. This paper aims to describe the application of FTWs as one of remediation methods that harnesses a significant potential because of its low-cost, eco-friendly, and sustainable nature for water restoration. 


1992 ◽  
Vol 25 (1) ◽  
pp. 133-138 ◽  
Author(s):  
E. Maliou ◽  
M. Malamis ◽  
P. O. Sakellarides

The ion exchange properties of the zeolites can be used to remove certain ions from the effluents. In this work a natural clinoptilolite has been examined systematically in order to evaluate whether this low cost mineral can be employed for the removal of the metals lead and cadmium which are very toxic, even at very low concentrations. Studies were performed under various conditions such as presence of different cations (Pb, Cd, Na), zeolite grain size, solution temperature. The results obtained indicate that the size of the zeolite does not affect the actual metal uptake at the equilibrium point, but the metal removal is greatly affected when the contact of the solid/liquid phases is short, a very essential parameter for the waste water treatment. For a short contact time the metal quantities removed using small grain size is nearly doubled. The same pattern is followed at higher temperatures, though a slight increase is observed for both zeolite grain sizes and both metals, lead and cadmium. At equilibrium half of the theoretical exchange capacity of the zeolite is used, approximately 1.4 meq/g for lead and 1.1 meq/g for cadmium. The kinetic curves show very clearly the selectivity of the zeolite for the Pb ions but also significant amounts of cadmium are removed as well.


2019 ◽  
Vol 39 (04) ◽  
Author(s):  
Adrien Turamyenyirijuru ◽  
Guillaume Nyagatare ◽  
Robert Morwani Gesimba ◽  
Rhoda Jerop Birech

This study assessed soil fertility in potato farms of Birunga and Buberuka highlands agro-ecological zones (AEZs). It compared nutrients levels (N, P, K, Mg, Ca, Na, S, Mn, Cu, Zn and Fe) and other parameters (pH, organic carbon [OC], cation exchange capacity [CEC], base saturation [BS], bulk density [BD] and texture) of soil samples. ANOVA revealed that pH of soils (5.53-6.50) varied from slightly to moderately acidic, BD fell below optimum for plant growth (Lessthan 1.8gcm-3), texture was sandy loam to sand clay loam. Soil fertility for OC (3.33-5.53%), N (0.15-0.31%) and CEC (10.08-18.60 meq/100g) varied from low to medium; and medium to high for BS (34.78-61.91%); was qualified medium for P (5.75-9.20 ppm), K (0.21-0.54 meq/100g), S (6.46 - 8.15 ppm) and majority of micronutrients. Values from Birunga AEZ were higher than ones from Buberuka AEZ except for BD, CEC, clay, silt, Na and Fe. There were significant differences between farms within locations for all parameters and significant differences between locations for all parameters except Na and Mn.


2020 ◽  
Vol 10 (2) ◽  
pp. 507 ◽  
Author(s):  
Federico Masís-Meléndez ◽  
Diana Segura-Chavarría ◽  
Carlos A García-González ◽  
Jaime Quesada-Kimsey ◽  
Karolina Villagra-Mendoza

Biochar is a carbon-rich organic material, obtained by the thermochemical conversion of biomass in an oxygen-limited environment, used as a soil amendment to stimulate soil fertility and improve soil quality. There is a clear need in developing countries for access to low cost, low technology options for biochar production, for example, top-lit updraft (TLUD) stoves, which are popular and spread worldwide. However, TLUD biochars are inevitably very variable in their properties for a variety of reasons. We present laboratory triplicate tests carried out on TLUD biochars obtained from waste pinewood and a Guadua bamboo. Analyzed properties include specific surface area (A-BET), porosity, skeletal density, hydrophobicity, proximal and elemental composition, cation exchange capacity (CEC), relative liming capacity and pH. SEM images of the bamboo and wood biochars are compared. The biochars were mixed with composted human excreta at 5% and 10% biochar content, and available water content (AWC) was analyzed. Operating temperatures in the TLUD were recorded, showing different behaviors among the feedstocks during the process. Differences in operating temperatures during charring of the bamboo samples seem to have led to differences in A-BET, hydrophobicity and CEC, following unprecedented trends. For the mixtures of the biochars with compost, at 5% biochar no significant differences were observed for AWC. However, in the 10% biochar mixtures, bamboo biochar showed an unexpectedly high AWC. Overall, variations of chemical and physical properties between bamboo biochars were greater, while pinewood biochars showed similar properties, consistent with more homogeneous charring temperatures.


2021 ◽  
Author(s):  
Anand Kumar Varma.S ◽  
SUVALAKSHMI A ◽  
MANJULA K R

Abstract Purpose-The global crisis of extreme air pollution is encountered nowadays due to the burning of fossil fuel, vehicular emission, modern sophistication and industrialization. These result infusions of high levels of Smoke, Particulate Matter (PM), Total volatile organic compounds (VOC), Hydrocarbons (HCHO), Nitrogen Oxides (NOX), Sulfur Oxides (SOX), Carbon Monoxide (CO) and other air pollutants into the atmosphere.Findings- Therefore, the development of a cost-saving air purifier is extremely essential with naturally occurring resources that are readily available throughout all the places at some point in time.A compact, flexible, modular and low-cost air purifier has designed employing a combination of porous plug and two filter media developed from natural resources.Methodology-The air purification unit is horizontal shaped and made with a simple PVC pipe. The first filter media was developed by mixing human hair with low-cost vegetable Mahua oil and the second one by wetting Vetiver (Chrysopogan zizanioides) with water. A mixture of human hair with Mahua oil can absorb the suspended particulate matter of size above 2.5 µm, and wet Vetiver shows the enormous capability of absorption of gases like NOx, SOx and Hydrocarbons and adsorption of particle size even less than 2.5 µm like PM1. Moreover, due to the pleasant smell, wet Vetiver can produce fresh air.Value-The cleaning and disposals of such naturally derived products are easy because of complete biodegradability and no negative impact on the environment. To restrict the filter media movement, porous plugs are coupled at the inlets and outlets of pipeline and filters. Due to the Joule-Thomson effect, the air coming out of the porous plug becomes 50oC cooler than the input air. The pollutant removal efficiency of indoor was found to be more than 60% were in the outdoor residential areas, it was more than 75%, and in the heavily crowded regions, it evaluated to be more than 65%. Amidst the alarming air pollution scenario throughout the world, such an invented device should be welcome due to the excellent performance as reflected in the production of pollutant-free fresh air at reduced temperature.


Sign in / Sign up

Export Citation Format

Share Document