scholarly journals Environmental Flows Determination and Monitoring with Hydraulic Habitat Models—Pushing the Boundaries of Habitat Models Application

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1950
Author(s):  
Piotr Parasiewicz ◽  
Paweł Prus ◽  
Christos Theodoropoulos ◽  
Knut Alfredsen ◽  
Mikołaj Adamczyk ◽  
...  

Hydraulic habitat simulation models were designed for the quantitative determination of environmental flows that consider the needs of aquatic fauna in rivers and streams. In the past 50 years, the modeling techniques were significantly developed, but expectations associated with model utility also increased. Nowadays, the tools are expected to be applicable across a range of spatial and temporal scales and to protect entire aquatic communities, while being inexpensive as well as easy to use in administrative and legal environments. Addressing these challenges is the focus of this volume. We invited papers that present recent developments in habitat modeling, supported by real life case studies. The submitted papers well represent the wide applicability of habitat simulation models, allowing us to address both ends of river management requirements: the ability to address very detailed site specific issues as well as the ability to address the coarse scale applications necessary in regional management.

Author(s):  
William Krakow ◽  
David A. Smith

Recent developments in specimen preparation, imaging and image analysis together permit the experimental determination of the atomic structure of certain, simple grain boundaries in metals such as gold. Single crystal, ∼125Å thick, (110) oriented gold films are vapor deposited onto ∼3000Å of epitaxial silver on (110) oriented cut and polished rock salt substrates. Bicrystal gold films are then made by first removing the silver coated substrate and placing in contact two suitably misoriented pieces of the gold film on a gold grid. Controlled heating in a hot stage first produces twist boundaries which then migrate, so reducing the grain boundary area, to give mixed boundaries and finally tilt boundaries perpendicular to the foil. These specimens are well suited to investigation by high resolution transmission electron microscopy.


Author(s):  
Hernâni Marques ◽  
Pedro Cruz-Vicente ◽  
Tiago Rosado ◽  
Mário Barroso ◽  
Luís A. Passarinha ◽  
...  

Environmental tobacco smoke exposure (ETS) and smoking have been described as the most prevalent factors in the development of certain diseases worldwide. According to the World Health Organization, more than 8 million people die every year due to exposure to tobacco, around 7 million due to direct ETS and the remaining due to exposure to second-hand smoke. Both active and second-hand exposure can be measured and controlled using specific biomarkers of tobacco and its derivatives, allowing the development of more efficient public health policies. Exposure to these compounds can be measured using different methods (involving for instance liquid- or gas-chromatographic procedures) in a wide range of biological specimens to estimate the type and degree of tobacco exposure. In recent years, a lot of research has been carried out using different extraction methods and different analytical equipment; this way, liquid–liquid extraction, solid-phase extraction or even miniaturized procedures have been used, followed by chromatographic analysis coupled mainly to mass spectrometric detection. Through this type of methodologies, second-hand smokers can be distinguished from active smokers, and this is also valid for e-cigarettes and vapers, among others, using their specific biomarkers. This review will focus on recent developments in the determination of tobacco smoke biomarkers, including nicotine and other tobacco alkaloids, specific nitrosamines, polycyclic aromatic hydrocarbons, etc. The methods for their detection will be discussed in detail, as well as the potential use of threshold values to distinguish between types of exposure.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José Manuel Pingarrón

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


2017 ◽  
Vol 10 (1) ◽  
pp. 5-29 ◽  
Author(s):  
F. Berthiller ◽  
C. Brera ◽  
M.H. Iha ◽  
R. Krska ◽  
V.M.T. Lattanzio ◽  
...  

This review summarises developments in the determination of mycotoxins over a period between mid-2015 and mid-2016. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed liquid chromatography mass spectrometry based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of presented methodologies.


EUGENIA ◽  
2015 ◽  
Vol 21 (3) ◽  
Author(s):  
Farida Fattah ◽  
J. E.X. Rogi ◽  
Mariam M. Toding

ABSTRACT   Decline in rice production in Sangihe Island partly due to climate change and the implementation of a less precise planting time. Rice Shierary  model was used to predict the timing of planting paddy and has advantages in time and cost savings. This study aims to determine the exact time of planting in paddy rice crops in the district of South Manganitu, North Tabukan and Tamako, as well as to determine whether the results of the simulation model Shierary Rice together with the results obtained from the Central Bureau of Statistic Sangihe Islands. Input model consists of solar radiation, rainfall, temperature and humidity, field capacity, permanent wilting point, varieties, irrigation, nitrogen fertilization, longitude and latitude of the study area. While the output was paddy rice yield potential. It can be concluded that (a) the appropriate planting time of paddy in the South Manganitu namely in June with a potential yield of 4.25 tonha-1 and March with a potential yield of 3.88 tonha-1. (b) the appropriate planting time of paddy in the  North Tabukan namely in June with a potential yield of 4.27 tonha-1 and March with a potential yield of 3.62 tonha-1. (c) the appropriate planting time of paddy in Tamako ie in March with a potential yield of 3.58 tonha-1 and February with a potential yield of 3.28 tonha-1. (d) the yield of rice field paddy with the determination of planting time by using the model of Shierary Rice nearing/line with productivity results which obtained by the Central Statistics Agency (BPS) Sangihe Islands. Keywords: planting, paddy, simulation models, Shierary Rice


Author(s):  
P. Sanghamitra ◽  
Debabrata Mazumder ◽  
Somnath Mukherjee

Abstract Discharge of oily wastewater imparts serious threat to the environment because of high level concentration of COD, BOD as well as oil and grease and it is difficult to treat such wastewater due to its inherent toxic and inhibitory property. A treatability study of oily wastewater (carrying petroleum) has been performed in the present work using a batch suspended growth reactor. The experiment was conducted using acclimatized suspended biomass in laboratory environment and the kinetic coefficients were determined which are immensely important for design of such reactor. The oil removal efficiency was observed to be in the range of 62.84–85.45% corresponding to average MLSS concentration range of 1,797–3,668 mg/L. Haldane kinetic model was found to be the best fitted for the biodegradation of oily wastewater with acclimatised microorganisms in the present investigation. The kinetic co-efficients including Ks, Y, kd, k and ki were calculated from the experimental data and the values were compared with published results cited by various scientists. The derived kinetic coefficients values are to be useful for understanding the dynamics of substrate utilisation with production of biomass and efficient design of biological systems and also for pilot plant investigation with real life wastewater of similar nature.


2004 ◽  
Vol 58 (7-8) ◽  
pp. 338-342
Author(s):  
Dragana Cickaric ◽  
Ljubinka Rajakovic

The quality of life depends on water quality. Good water quality and the rational use of water are an absolute need of the new millennium. Although it is an ecological and health priority to prohibit the contamination of water and water protection, it is a responsibility for environmental engineers and chemists to develop and apply effective methods for monitoring and controlling of water quality, and at that way prevent ecological and technological catastrophe on time. In this paper modern methods and process for monitoring, control and detection of cyanide in water and wastewater are presented. Recent developments in instrumental techniques and treatment for determination of this toxic substance in water are described, particularly the methods according to green analytical aspects.


Author(s):  
Ruth Banomyong ◽  
Apichat Sodapang

The purpose of this chapter is to provide a framework for the development of relief supply chain systems. An illustrative case study is presented in order to help relief supply chain decision makers in their relief supply chain planning process. Developing simulation models to test proposed relief supply chain response plans is much less risky than actually waiting for another disaster to happen and test the proposed relief supply chain model in a real life situation. The simulated outcome can then be used to refine the developed relief supply chain response model.


Sign in / Sign up

Export Citation Format

Share Document