scholarly journals Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1768
Author(s):  
Matteo Rubinato ◽  
Min Luo ◽  
Xing Zheng ◽  
Jaan H. Pu ◽  
Songdong Shao

Fast urbanization and industrialization have progressively caused severe impacts on mountainous, river, and coastal environments, and have increased the risks for people living in these areas. Human activities have changed ecosystems hence it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties on the accurate and efficient management of these areas to protect the environment as well as the health and safety of people. In actual fact, climate change is altering rain patterns and causing extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and the contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigate the underlying causes, and to identify feasible mitigation and adaptation strategies to reduce negative impacts on both the environment and citizens. To contribute towards this aim, the selected papers in this Special Issue covered a wide range of issues that are mainly relevant to: (i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; (ii) the effect of climate change on the hydrological processes in mountainous, river, and coastal environments, (iii) the protection of ecosystems and the restoration of areas damaged by the effects of climate change and human activities.

Author(s):  
Muhammad Babur ◽  
Mukand Singh Babel ◽  
Sangam Shrestha ◽  
Akiyuki Kawasaki ◽  
Nitin Kumar Tripathi

Assessment of extreme events and climate change on reservoir inflow is important for water and power stressed countries. Projected climate is subject to uncertainties related to climate change scenarios and Global Circulation Models (GCMs’). Extreme climatic events will increase with the rise in temperature as mentioned in the AR5 of the IPCC. This paper discusses the consequences of climate change that include extreme events on discharge. Historical climatic and gauging data were collected from different stations within a watershed. The observed flow data was used for calibration and validation of SWAT model. Downscaling was performed on future GCMs’ temperature and precipitation data, and plausible extreme events were generated. Corrected climatic data was applied to project the influence of climate change. Results showed a large uncertainty in discharge using different GCMs’ and different emissions scenarios. The annual tendency of the GCMs’ is bi-vocal: six GCMs’ projected a rise in annual flow, while one GCM projected a decrease in flow. The change in average seasonal flow is more as compared to annual variations. Changes in winter and spring discharge are mostly positive, even with the decrease in precipitation. The changes in flows are generally negative for summer and autumn due to early snowmelt from an increase in temperature. The change in average seasonal flows under RCPs’ 4.5 and 8.5 are projected to vary from -29.1 to 130.7% and -49.4 to 171%, respectively. In the medium range (RCP 4.5) impact scenario, the uncertainty range of average runoff is relatively low. While in the high range (RCP 8.5) impact scenario, this range is significantly larger. RCP 8.5 covered a wide range of uncertainties, while RCP 4.5 covered a short range of possibilities. These outcomes suggest that it is important to consider the influence of climate change on water resources to frame appropriate guidelines for planning and management.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


Author(s):  
Walter Leal Filho ◽  
Abul Al-Amin ◽  
Gustavo Nagy ◽  
Ulisses Azeiteiro ◽  
Laura Wiesböck ◽  
...  

There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events.


2021 ◽  
Author(s):  
luis Augusto sanabria ◽  
Xuerong Qin ◽  
Jin Li ◽  
Robert Peter Cechet

Abstract Most climatic models show that climate change affects natural perils' frequency and severity. Quantifying the impact of future climate conditions on natural hazard is essential for mitigation and adaptation planning. One crucial factor to consider when using climate simulations projections is the inherent systematic differences (bias) of the modelled data compared with observations. This bias can originate from the modelling process, the techniques used for downscaling of results, and the ensembles' intrinsic variability. Analysis of climate simulations has shown that the biases associated with these data types can be significant. Hence, it is often necessary to correct the bias before the data can be reliably used for further analysis. Natural perils are often associated with extreme climatic conditions. Analysing trends in the tail end of distributions are already complicated because noise is much more prominent than that in the mean climate. The bias of the simulations can introduce significant errors in practical applications. In this paper, we present a methodology for bias correction of climate simulated data. The technique corrects the bias in both the body and the tail of the distribution (extreme values). As an illustration, maps of the 50 and 100-year Return Period of climate simulated Forest Fire Danger Index (FFDI) in Australia are presented and compared against the corresponding observation-based maps. The results show that the algorithm can substantially improve the calculation of simulation-based Return Periods. Forthcoming work will focus on the impact of climate change on these Return Periods considering future climate conditions.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Mirko Andreja Borisov

Climate change conditions a wide range of impacts such as the impact on weather, but also on ecosystems and biodiversity, agriculture and forestry, human health, hydrological regime and energy. In addition to global warming, local factors affecting climate change are being considered. Presentation and analysis of the situation was carried out using geoinformation technologies (radar recording, remote detection, digital terrain modeling, cartographic visualization and geostatistics). This paper describes methods and use of statistical indicators such as LST, NDVI and linear correlations from which it can be concluded that accelerated construction and global warming had an impact on climate change in period from 1987 to 2018 in the area of Vojvodina – Republic of Serbia. Also, using the global SRTM DEM, it is shown how the temperature behaves based on altitude change. Conclusions and possible consequences in nature and society were derived.


Author(s):  
Never Mujere

Concerns of food and environmental security have increased enormously in recent years due to the vagaries of climate change and variability. Efforts to promote food security and environmental sustainability often reinforce each other and enable farmers to adapt to and mitigate the impact of climate change and other stresses. Some of these efforts are based on appropriate technologies and practices that restore natural ecosystems and improve the resilience of farming systems, thus enhancing food security. Climate smart agriculture (CSA) principles, for example, translate into a number of locally-devised and applied practices that work simultaneously through contextualised crop-soil-water-nutrient-pest-ecosystem management at a variety of scales. The purpose of this paper is to review concisely the current state-of-the-art literature and ascertain the potential of the Pfumvudza concept to enhance household food security, climate change mitigation and adaptation as it is promoted in Zimbabwe. The study relied heavily on data from print and electronic media. Datasets pertaining to carbon, nitrous oxide and methane storage in soils and crop yield under zero tillage and conventional tillage were compiled. Findings show that, compared to conventional farming, Pfumvudza has great potential to contribute towards household food security and reducing carbon emissions if implemented following the stipulated recommendations. These include among others, adequate land preparation and timely planting and acquiring inputs. However, nitrous oxide emissions tend to increase with reduced tillage and, the use of artificial fertilizers, pesticides and herbicides is environmentally unfriendly.


Author(s):  
Hind Benammi ◽  
Omar El Hiba ◽  
Abdelmohcine Aimrane ◽  
Nadia Zouhairi ◽  
Hicham Chatoui ◽  
...  

Climate change has an important impact on the environment. As it degrades the quality of water, soil, and area, it also spreads the distribution of many toxic elements, specifically heavy metals and pesticides. The impact of climate change on contamination with heavy metals and pesticides has been well investigated and discussed. The influence of these elements on human health is obviously exacerbated following their extended distribution. Moreover, a wide range of health problems have been associated to such intoxication, among which impairment and dysfunction of the nervous system are prominent. In this chapter, the authors will shed light on two most common neurological diseases such as epilepsy and stroke affecting people worldwide arising from food and water contaminations, mainly with heavy metals and pesticides.


2022 ◽  
pp. 1519-1534
Author(s):  
Samreen Siddiqui ◽  
Muhammad Imran

Climate change is an influencing phenomenon in present global perspective having a wide range of impacts at different levels within the society and industries. This chapter introduces the climate change basics and its major impacts on the global environment. Further, it describes the tourism industry and identifies its relationship with climate change. Scientists take different approaches to deal with climate indices and their application to identify the impact of climate change on the tourism industry. This chapter classifies the tourism industry into different industry type based on the regional characteristics links with the geographical locations. Climate effects have been discussed with different case studies and regions. Then the chapter has been concluded with the major overall impact of climate change in terms of temperature rise, sea level rise (SLR), change in precipitation and extreme events in some cases, on the tourism industry, and next steps to be taken towards sustainable tourism industry.


Sign in / Sign up

Export Citation Format

Share Document