scholarly journals Taking into Account both Explicit Conduits and the Unsaturated Zone in Karst Reservoir Hybrid Models: Impact on the Outlet Hydrograph

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3221
Author(s):  
Lucie Dal Soglio ◽  
Charles Danquigny ◽  
Naomi Mazzilli ◽  
Christophe Emblanch ◽  
Gérard Massonnat

The main outlets of karst systems are springs, the hydrographs of which are largely affected by flow processes in the unsaturated zone. These processes differ between the epikarst and transmission zone on the one hand and the matrix and conduit on the other hand. However, numerical models rarely consider the unsaturated zone, let alone distinguishing its subsystems. Likewise, few models represent conduits through a second medium, and even fewer do this explicitly with discrete features. This paper focuses on the interest of hybrid models that take into account both unsaturated subsystems and discrete conduits to simulate the reservoir-scale response, especially the outlet hydrograph. In a synthetic karst aquifer model, we performed simulations for several parameter sets and showed the ability of hybrid models to simulate the overall response of complex karst aquifers. Varying parameters affect the pathway distribution and transit times, which results in a large variety of hydrograph shapes. We propose a classification of hydrographs and selected characteristics, which proves useful for analysing the results. The relationships between model parameters and hydrograph characteristics are not all linear; some of them have local extrema or threshold limits. The numerous simulations help to assess the sensitivity of hydrograph characteristics to the different parameters and, conversely, to identify the key parameters which can be manipulated to enhance the modelling of field cases.

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3219
Author(s):  
Lucie Dal Soglio ◽  
Charles Danquigny ◽  
Naomi Mazzilli ◽  
Christophe Emblanch ◽  
Gérard Massonnat

Usual conceptual models of karst hydrodynamics highlight the important role of unsaturated subsystems in recharge repartition. However, few of them have been compared with scarce suitable physically-based numerical models. Hybrid models that couple single continuum medium with discrete features promise an improved consideration of karst specificities. Here we evaluate their capability to properly reproduce interactions between a vertical conduit and the surrounding unsaturated matrix. We simulate the response of such a configuration to a single recharge event for various sets of parameters. We show the ability of hybrid models to reproduce the most significant behaviors described in the literature, i.e., transient storage and distribution of recharge, flow concentration towards conduits in the epikarst, and matrix-conduit exchanges varying in time and space. In addition to the explicit conduits, simulating variably saturated flows with the Richards equation and distinguishing the epikarst and the transmission zone are key elements to reproduce most processes. The contrasts between subsystems necessary to observe desired behaviors have been quantified. They are reinforced by the varying matrix saturation that causes realistic competition between matrix and explicit conduits. The study also highlights the need to deepen knowledge of the scaled medium properties we need to know to apply such models to actual cases.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Author(s):  
Sebastian Brandstaeter ◽  
Sebastian L. Fuchs ◽  
Jonas Biehler ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractGrowth and remodeling in arterial tissue have attracted considerable attention over the last decade. Mathematical models have been proposed, and computational studies with these have helped to understand the role of the different model parameters. So far it remains, however, poorly understood how much of the model output variability can be attributed to the individual input parameters and their interactions. To clarify this, we propose herein a global sensitivity analysis, based on Sobol indices, for a homogenized constrained mixture model of aortic growth and remodeling. In two representative examples, we found that 54–80% of the long term output variability resulted from only three model parameters. In our study, the two most influential parameters were the one characterizing the ability of the tissue to increase collagen production under increased stress and the one characterizing the collagen half-life time. The third most influential parameter was the one characterizing the strain-stiffening of collagen under large deformation. Our results suggest that in future computational studies it may - at least in scenarios similar to the ones studied herein - suffice to use population average values for the other parameters. Moreover, our results suggest that developing methods to measure the said three most influential parameters may be an important step towards reliable patient-specific predictions of the enlargement of abdominal aortic aneurysms in clinical practice.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 816
Author(s):  
Yuxuan Ge ◽  
Zhenhua Hu ◽  
Jili Chen ◽  
Yujie Qin ◽  
Fei Wu ◽  
...  

GLP-1 receptor agonists are a class of diabetes medicines offering self-regulating glycemic efficacy and may best be administrated in long-acting forms. Among GLP-1 receptor agonists, exenatide is the one requiring the least dose so that controlled-release poly(d, l-lactic-co-glycolic acid) (PLGA) microspheres may best achieve this purpose. Based on this consideration, the present study extended the injection interval of exenatide microspheres from one week of the current dosage form to four weeks by simply blending Mg(OH)2 powder within the matrix of PLGA microspheres. Mg(OH)2 served as the diffusion channel creator in the earlier stage of the controlled-release period and the decelerator of the self-catalyzed degradation of PLGA (by the formed lactic and glycolic acids) in the later stage due to its pH-responsive solubility. As a result, exenatide gradually diffused from the microspheres through Mg(OH)2-created diffusion channels before degradation of the PLGA matrix, followed by a mild release due to Mg(OH)2-buffered degradation of the polymer skeleton. In addition, an extruding–settling process comprising squeezing the PLGA solution through a porous glass membrane and sedimentation-aided solidification of the PLGA droplets was used to prepare the microspheres to ensure narrow size distribution and 95% encapsulation efficiency in an aqueous continuous phase. A pharmacokinetic study using rhesus monkey model confirmed the above formulation design by showing a steady blood concentration profile of exenatide with reduced CMAX and dosage form index. Mg·(OH)2


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 515
Author(s):  
Thomas Freudenmann ◽  
Hans-Joachim Gehrmann ◽  
Krasimir Aleksandrov ◽  
Mohanad El-Haji ◽  
Dieter Stapf

This paper describes a procedure and an IT product that combine numerical models, expert knowledge, and data-based models through artificial intelligence (AI)-based hybrid models to enable the integrated control, optimization, and monitoring of processes and plants. The working principle of the hybrid model is demonstrated by NOx reduction through guided oscillating combustion at the pulverized fuel boiler pilot incineration plant at the Institute for Technical Chemistry, Karlsruhe Institute of Technology. The presented example refers to coal firing, but the approach can be easily applied to any other type of nitrogen-containing solid fuel. The need for a reduction in operation and maintenance costs for biomass-fired plants is huge, especially in the frame of emission reductions and, in the case of Germany, the potential loss of funding as a result of the Renewable Energy Law (Erneuerbare-Energien-Gesetz) for plants older than 20 years. Other social aspects, such as the departure of experienced personnel may be another reason for the increasing demand for data mining and the use of artificial intelligence (AI).


2018 ◽  
Vol 612 ◽  
pp. L1 ◽  
Author(s):  
E. Fossat ◽  
F. X. Schmider

Context. The detection of asymptotic solar g-mode parameters was the main goal of the GOLF instrument onboard the SOHO space observatory. This detection has recently been reported and has identified a rapid mean rotation of the solar core, with a one-week period, nearly four times faster than all the rest of the solar body, from the surface to the bottom of the radiative zone. Aim. We present here the detection of more g modes of higher degree, and a more precise estimation of all their parameters, which will have to be exploited as additional constraints in modeling the solar core. Methods. Having identified the period equidistance and the splitting of a large number of asymptotic g modes of degrees 1 and 2, we test a model of frequencies of these modes by a cross-correlation with the power spectrum from which they have been detected. It shows a high correlation peak at lag zero, showing that the model is hidden but present in the real spectrum. The model parameters can then be adjusted to optimize the position (at exactly zero lag) and the height of this correlation peak. The same method is then extended to the search for modes of degrees 3 and 4, which were not detected in the previous analysis.Results. g-mode parameters are optimally measured in similar-frequency bandwidths, ranging from 7 to 8 μHz at one end and all close to 30 μHz at the other end, for the degrees 1 to 4. They include the four asymptotic period equidistances, the slight departure from equidistance of the detected periods for l = 1 and l = 2, the measured amplitudes, functions of the degree and the tesseral order, and the splittings that will possibly constrain the estimated sharpness of the transition between the one-week mean rotation of the core and the almost four-week rotation of the radiative envelope. The g-mode periods themselves are crucial inputs in the solar core structure helioseismic investigation.


1993 ◽  
Vol 6 (1) ◽  
pp. 61-80 ◽  
Author(s):  
John D'Arcy May

Do human rights in their conventional, Western understanding really meet the needs of Pacific peoples? This article argues that land rights are a better clue to those needs. In Aboriginal Australia, Fiji, West Papua and Papua New Guinea, case studies show that people's relationship to land is religious and implicitly theological. The article therefore suggests that rights to land need to be supplemented by rights of the land extending to the earth as the home of the one human community and nature as the matrix of all life.


Sign in / Sign up

Export Citation Format

Share Document