scholarly journals The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review

Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Micòl Mastrocicco ◽  
Nicolò Colombani

The Mediterranean area is undergoing intensive demographic, social, cultural, economic, and environmental changes. This generates multiple environmental pressures such as increased demand for water resources, generation of pollution related to wastewater discharge, and land consumption. In the Mediterranean area, recent climate change studies forecast large impacts on the hydrologic cycle. Thus, in the next years, surface and ground-water resources will be gradually more stressed, especially in coastal areas. In this review paper, the historical and geographical distribution of peer-review studies and the main mechanisms that promote aquifer salinization in the Mediterranean area are critically discussed, providing the state of the art on topics such as actual saltwater wedge characterization, paleo-salinities in coastal areas, water-rock interactions, geophysical techniques aimed at delineating the areal and vertical extent of saltwater intrusion, management of groundwater overexploitation using numerical models and GIS mapping techniques for aquifer vulnerability to salinization. Each of the above-mentioned approaches has potential advantages and drawbacks; thus, the best tactic to tackle coastal aquifer management is to employ a combination of approaches. Finally, the number of studies focusing on predictions of climate change effects on coastal aquifers are growing but are still very limited and surely need further research.

Climate ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 41
Author(s):  
Tuu Nguyen Thanh ◽  
Van Pham Dang Tri ◽  
Seungdo Kim ◽  
Thuy Nguyen Phuong ◽  
Thuy Lam Mong ◽  
...  

Effective water management plays an important role in socioeconomic development in the Vietnamese Mekong Delta (VMD). The impacts of climate change and human activities (that is, domestic consumption and industrial and agricultural activities) vary in different subregions of the delta. In order to provide intersectoral data for determining the significantly impacted subregions of the VMD, the present study simulated interactions between local climatic patterns, human activities, and water resources using a system dynamics modeling (SDM) approach with each subregion as an agent of the developed model. The average rainfall and temperature of 121 subregions in the VMD were collected during 1982–2012, and the future changes of climate by provinces were based on the Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5) by the end of 21st century. The assessment was based on the levels of impact of various factors, including (1) water consumption, (2) differences between evapotranspiration and rainfall, and (3) spatial distribution of salinity intrusion over the delta scale. In the coastal areas, as well as the central and upstream areas, water resources were projected to be affected by environmental changes, whereas the former, characterized by the lack of surface freshwater, would be affected at a greater scale during the dry season. Besides, the sea level rise would lead to an increase in negative impacts in the eastern coastal areas, suggesting that water-saving techniques should be applied not only for agriculture, but also for industry and domestic water consumption during the dry season. In addition, the south subregions (that is, the western subregions of the Hau River except for An Giang) were likely to be flooded due to the simulated high rainfall and seasonal rises of sea level during the wet season. Therefore, the alternative forms of settlement and livelihood should be considered toward balance management with changing delta dynamics.


Author(s):  
Jamie Woodward

This volume has traced the development of the Mediterranean landscape over very long timescales and has examined modern processes in a wide range of settings. Earlier chapters have explored tectonic processes and the evolution of the topography and biota, the nature and impact of Quaternary climate change, and natural hazards, as well as the increasing role of human activity in shaping geomorphological processes and ecosystems during the course of the postglacial period. A core theme in several chapters is the nature of the relationship between humans and the Mediterranean environment. Over the last one hundred years or so, and especially in the period since the Second World War, this relationship has changed dramatically. Resource exploitation, urban expansion, and rural depopulation have all taken place at unprecedented rates, with major impacts upon the quality of land, water, air, and ecosystems. The final part of this volume examines four key topics of environmental concern; its four chapters explore, respectively, land degradation, water resources, interactions between air quality and the climate system, and biodiversity and conservation. Where possible, it is important to place these issues within an appropriate historical perspective. Many components of the Mediterranean environment have responded in a sensitive way to past environmental changes, but the pressures on land and water resources have never been more intense. Improved monitoring networks and new modelling efforts are needed to predict more effectively the impact of climate and social change on all environmental systems and to help inform policymakers seeking a more sustainable use of the region’s resources. Chapter 20 examines the ecological aspects of land degradation and sets out new ideas on productivity dynamics. It explores some of the interactions between land use change, vegetation dynamics, grazing patterns and wildfires. The uneven geography of water resources and water use are highlighted in Chapter 21. Water resource issues have become an increasingly important factor in the geopolitics of the region against a background of climate change uncertainty, rising demand, and a diminishing resource base. Chapter 22 analyses the interactions between climate, air quality, and the water cycle.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 605
Author(s):  
Alba Piña-Rey ◽  
Estefanía González-Fernández ◽  
María Fernández-González ◽  
Mª. Nieves Lorenzo ◽  
Fco. Javier Rodríguez-Rajo

Viticultural climatic indices were assessed for the evaluation of the meteorological variations in the requirements of wine cultivars. The applied bioclimatic indices have been widely used to provide an initial evaluation of climate change impacts on grapevine and to delineate wine regions and suitable areas for planting around the world. The study was carried out over a period of 16 years (from 2000 to 2015) in five Designation of Origin areas in Northwestern Spain located in the Eurosiberian region, the transition zone between the Eurosiberian and the Mediterranean areas, and in the Mediterranean area. In addition, the high-resolution meteorological dataset “Spain02” was applied to the bioclimatic indices for the period 1950–2095. To further assess the performance of “Spain02”, Taylor diagrams were elaborated for the different bioclimatic indices. A significant trend to an increase of the Winkler, Huglin, Night Cold Index and GSS Indices was detected in the North-western Spain, whereas slight negative trends for BBLI and GSP Indices were observed. To analyze future projections 2061–2095, data from the high-resolution dynamically downscaled daily climate simulations from EURO-CORDEX project were used. To further assess the performance of Spain02, Taylor diagrams were elaborated for the different bioclimatic indices. A trend to an increase of the Winkler, Huglin, Night Cold Index and GSP Indices was detected in Northwestern Spain, whereas slight negative trends for BBLI and GSP Indices were observed. Our results showed that climatic conditions in the study region could variate for the crop in the future, more for Mediterranean than Eurosiberian bioclimatic area. Due to an advance in the phenological events or the vintage data, more alcohol-fortified wines and variations in the acidity level of wines could be expected in Northwestern Spain, these processes being most noticeable in the Mediterranean area. The projections for the BBLI and GSP Indices will induce a decrease in the pressure of the mildew attacks incidence in the areas located at the Eurosiberian region and the nearest transition zones. Projections showed if the trend of temperature increase continues, some cultural practice variations should be conducted in order to preserve the grape cultivation suitability in the studied area.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3547
Author(s):  
Rossana Escanilla-Minchel ◽  
Hernán Alcayaga ◽  
Marco Soto-Alvarez ◽  
Christophe Kinnard ◽  
Roberto Urrutia

Excluding Antarctica and Greenland, 3.8% of the world’s glacier area is concentrated in Chile. The country has been strongly affected by the mega drought, which affects the south-central area and has produced an increase in dependence on water resources from snow and glacier melting in dry periods. Recent climate change has led to an elevation of the zero-degree isotherm, a decrease in solid-state precipitation amounts and an accelerated loss of glacier and snow storage in the Chilean Andes. This situation calls for a better understanding of future water discharge in Andean headwater catchments in order to improve water resources management in glacier-fed populated areas. The present study uses hydrological modeling to characterize the hydrological processes occurring in a glacio-nival watershed of the central Andes and to examine the impact of different climate change scenarios on discharge. The study site is the upper sub-watershed of the Tinguiririca River (area: 141 km2), of which nearly 20% is covered by Universidad Glacier. The semi-distributed Snowmelt Runoff Model + Glacier (SRM+G) was forced with local meteorological data to simulate catchment runoff. The model was calibrated on even years and validated on odd years during the 2008–2014 period and found to correctly reproduce daily runoff. The model was then forced with downscaled ensemble projected precipitation and temperature series under the RCP 4.5 and RCP 8.5 scenarios, and the glacier adjusted using a volume-area scaling relationship. The results obtained for 2050 indicate a decrease in mean annual discharge (MAD) of 18.1% for the lowest emission scenario and 43.3% for the most pessimistic emission scenario, while for 2100 the MAD decreases by 31.4 and 54.2%, respectively, for each emission scenario. Results show that decreasing precipitation lead to reduced rainfall and snowmelt contributions to discharge. Glacier melt thus partly buffers the drying climate trend, but our results show that the peak water occurs near 2040, after which glacier depletion leads to reducing discharge, threatening the long-term water resource availability in this region.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5307
Author(s):  
Antonio Moretti ◽  
Charalampos Pitas ◽  
George Christofi ◽  
Emmanuel Bué ◽  
Modesto Gabrieli Francescato

The paper presents a survey on the situation in terms of solutions for grid integration throughout the Mediterranean area in the framework of climate change and energy transition. The objective of the study is focused on Mediterranean region connectivity initiatives in the context of the broader vision of an interconnected European–Mediterranean (Euro–Med) power system for a future low-carbon energy system as the fundamental objective of Med-TSO, the Association of the Mediterranean Transmission System Operators (TSOs) for electricity. The analysis examines how the power grid connectivity evolves from now on to 2030, describing the progress made to date in integrating the power grids of the Mediterranean region as well as the future possibilities for a more integrated power grid covering the whole region. The research, conducted within Mediterranean Project II of Med-TSO, includes an overview on the current situation of the interconnections and the proposal for the 2030 interconnections Master Plan, coherent with the national development plans (NDPs) and shared energy scenarios for the whole region at the same horizon of 2030. It conducts an assessment of the gap between the current and the 2030 expected situation, taking into account the energy transition toward 2030 objectives resulting from the achievements of climate change pledges, local governmental policies and EU strategy for neighboring countries and Africa. The solutions survey includes technical solutions, procedures and rules to improve systems’ integration and increase regional electricity exchanges in Med-TSO countries, and is aimed at achieving a higher quality of services and better efficiency of energy supply in Med-TSO member countries in the framework of the expected energy transition. The main scope is to present solutions that will be made available due to maturity and experience in the coming decade, specifically: high voltage direct current (HVDC) transmission technologies, energy storage, sectors coupling, smart grid technologies and services, inter-TSO and transmission–distribution cooperation platforms, etc. The article presents two case studies: the island paradigm and a new cross-border interconnection project of common interest. Finally, the post-pandemic core role of TSOs, which has become more relevant than ever, is transformed into a key-enabler of energy transition towards a sustainable, resilient and innovative climate-neutral recovery.


2006 ◽  
Vol 84 (1) ◽  
pp. 151-163 ◽  
Author(s):  
M. Anne Harris ◽  
Brian F. Cumming ◽  
John P. Smol

New Brunswick lakes are subjected to multiple environmental stressors, such as atmospheric acid deposition and climate change. In the absence of long-term environmental data, the impacts of these stressors are not well understood. Long-term effects of environmental change on diatom species assemblages were assessed in the sediments of 16 New Brunswick lakes using paleolimnological approaches. A regional trend of increasing Cyclotella stelligera Cleve & Gunrow and decreasing Aulacoseira species complex was recorded in most lakes. Detailed paleolimnological analyses of Wolfe, Cundy, and West Long lakes revealed varying degrees of species change, with assemblage shifts beginning ca. 1900 CE (common era). These species trends are not consistent with acidification. However, linear regression of mean July temperature with time for two New Brunswick historical instrumental temperature records revealed statistically significant warming over the past century. The shift from heavily silicified tychoplanktonic Aulacoseira species to small planktonic diatom species, such as C. stelligera, is consistent with paleolimnological inferences of warming trends recorded in several other lake regions of the Northern Hemisphere. These assemblage shifts are likely due to recent climate change and may be mediated by reduced ice cover and (or) increased thermal stability (decreased lake mixing) during the open water period.


2016 ◽  
Vol 25 (2) ◽  
pp. eR02 ◽  
Author(s):  
Teresa Soares David ◽  
Clara Assunção Pinto ◽  
Nadezhda Nadezhdina ◽  
Jorge Soares David

Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning.Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels.Material and Methods: For literature review we used Scopus, Web of Science and Google Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes.Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture.Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silvicultural practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed.Keywords: tree hydraulics; tree mortality; climate change; forest management; water resources.


2008 ◽  
Vol 27 (4) ◽  
pp. 294-306 ◽  
Author(s):  
Gawie De Villiers ◽  
Giel Viljoen ◽  
Herman Booysen

According to the geological history of the earth, climate change is an integral part of environmental changes that occurred over time. Sufficient evidence is provided of recurrent wet and dry and cold and hot periods due to natural circumstances. Since the industrial revolution human activities increasingly contribute to air pollution by releasing huge volumes of carbon dioxide and other gasses into the atmosphere, so much so that it is generally accepted that increase in global warming the past decades is directly linked to human activities. Observable signs of human induced climate change include increasing average temperatures at many places, melting ice caps in polar areas, rising sea levels on a global scale and coastal disturbances and damages due to storm surges on coastal areas in various countries, also in South Africa. Consensus from a number of hydrological-meteorological circulation models show, for South Africa, a rise in average annual winter and summer temperatures of between 1.5 and 3.0 degrees Centigrade the following number of decades with a strong possibility of an increase in rainfall in the eastern parts and a decrease in rainfall in the western parts. Bigger floods and longer droughts should occur more frequently as well as severe sea onslaught activities along the eastern and south-eastern coastal areas. The net impact of the predictions on the community is negative. There is though other scientists who indicate that no concrete proof of climate change in South Africa exists; including changes with regard to river floods and droughts. According to more beneficial than detrimental. Despite the differences in opinion about the relative contribution of natural and human activities to the present global warming, changes in hydrological and characteristics of floods in several parts of South Africa in the immediate past, necessitate modifications to available models and approaches to flood damage management and control. Flood conditions need to be managed with applicable models. Modifications are furthermore essential as a result of meaningful demographic, social, physical and economic changes in the working and living environments of people and communities.


2021 ◽  
Vol 25 (2) ◽  
pp. 637-651
Author(s):  
Michel Le Page ◽  
Younes Fakir ◽  
Lionel Jarlan ◽  
Aaron Boone ◽  
Brahim Berjamy ◽  
...  

Abstract. In the context of major changes (climate, demography, economy, etc.), the southern Mediterranean area faces serious challenges with intrinsically low, irregular, and continuously decreasing water resources. In some regions, the proper growth both in terms of cropping density and surface area of irrigated areas is so significant that it needs to be included in future scenarios. A method for estimating the future evolution of irrigation water requirements is proposed and tested in the Tensift watershed, Morocco. Monthly synthetic crop coefficients (Kc) of the different irrigated areas were obtained from a time series of remote sensing observations. An empirical model using the synthetic Kc and rainfall was developed and fitted to the actual data for each of the different irrigated areas within the study area. The model consists of a system of equations that takes into account the monthly trend of Kc, the impact of yearly rainfall, and the saturation of Kc due to the presence of tree crops. The impact of precipitation change is included in the Kc estimate and the water budget. The anthropogenic impact is included in the equations for Kc. The impact of temperature change is only included in the reference evapotranspiration, with no impact on the Kc cycle. The model appears to be reliable with an average r2 of 0.69 for the observation period (2000–2016). However, different subsampling tests of the number of calibration years showed that the performance is degraded when the size of the training dataset is reduced. When subsampling the training dataset to one-third of the 16 available years, r2 was reduced to 0.45. This score has been interpreted as the level of reliability that could be expected for two time periods after the full training years (thus near to 2050). The model has been used to reinterpret a local water management plan and to incorporate two downscaled climate change scenarios (RCP4.5 and RCP8.5). The examination of irrigation water requirements until 2050 revealed that the difference between the two climate scenarios was very small (< 2 %), while the two agricultural scenarios were strongly contrasted both spatially and in terms of their impact on water resources. The approach is generic and can be refined by incorporating irrigation efficiencies.


Sign in / Sign up

Export Citation Format

Share Document