scholarly journals A Global Assessment of the Potential for Ocean-Driven Transport in Hatchling Sea Turtles

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 757
Author(s):  
Morgan J. DuBois ◽  
Nathan F. Putman ◽  
Susan E. Piacenza

Ocean circulation models are an essential tool for use in estimating the movements of drifting marine species. Across the world, hatchling sea turtle transport to the pelagic ocean is facilitated by the local currents off their natal beaches. It is difficult, if not impossible, to observe this transport reliably for any lengthy period, and, as such, ocean circulation models are an essential tool for studying sea turtles during this vulnerable time. Here, we use the ocean circulation model HYCOM and the particle simulator Ichthyop to model the first month of hatchling transport across all sea turtle species from nesting sites across the world from 25 cohorts of hatchlings at 67 nesting sites. We evaluated transport as a function of spatiotemporal factors that could influence turtle movement, using generalized linear models and the information theoretic approach to model selection. We found that multiple physical factors influence transport across the first month of movement and that annual variability is an important factor in hatchling transport. Our findings suggest that the beaches turtles hatch from and the year in which they hatch may shape their early life and the speed of transport into the relative safety of the open ocean. An increased understanding of the likely survival of a cohort may aid in designating funds and planning conservation strategies for individual beaches to either compensate for or take advantage of the local currents.

2019 ◽  
Author(s):  
Sahmorie J.K. Cameron ◽  
Miguel Baltazar-Soares ◽  
Christophe Eizaguirre

AbstractPhilopatry and long distance migrations are common in the animal kingdom, of which sea turtles are flagship examples. Recent studies have suggested sea turtles use the Earth’s magnetic field to navigate across ocean basins to return to their natal area, yet the mechanisms underlying this process remain unknown. If true though, the genetic structure at nesting sites should positively correlate with differences in location-specific magnetic vectors within nesting regions. Here, we confirm this working hypothesis but only in certain regions of the world and for all sea turtle species nesting in those regions. Reversely, where no correlations were found between genetic differentiation and geomagnetic vectors, this was the case for all nesting sea turtle species. Our approach hence reveals parallel but not universal use of geomagnetic cues in sea turtles. We describe magneto-sensing regions as characterized by sharp clines of total and vertical field intensity vectors offering the navigation cues that increase philopatric accuracy and promote genetic structuring among sea turtle populations.


EDIS ◽  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Analisa Duran ◽  
Ruth Francis-Floyd ◽  
Maia Patterson Mcguire ◽  
Iskande Larkin

Florida’s coastline provides critical habitat for sea turtle nesting, as it has for millions of years. Throughout the state, three of the seven species of sea turtles in the world have significant nesting populations. Loggerhead, green, and leatherback sea turtles use Florida’s beaches to lay nests each year. This publication provides information on the identification, nesting characteristics, and abundance of each of the common sea turtle species who nest in Florida.


2019 ◽  
Vol 15 (6) ◽  
pp. 20190248 ◽  
Author(s):  
Edwin R. Price ◽  
Paul R. Sotherland ◽  
Bryan P. Wallace ◽  
James R. Spotila ◽  
Edward M. Dzialowski

The internesting interval separates successive clutches of sea turtle eggs, and its duration varies both among and within species. Here, we review the potential physiological limits to this interval, and develop the hypothesis that desalination capacity limits the internesting interval owing to the requirement for water deposition in eggs. Sea turtles deposit 1–4 kg of water per clutch in egg albumen; for most species, this represents about 2% of adult body mass. We calculate how quickly turtles can recover this water by estimating maximal salt excretion rates, metabolic water production and urinary losses. From this water balance perspective, the ‘water-limitation’ hypothesis is plausible for green turtles but not for leatherbacks. Some plasma biochemistry studies indicate dehydration in sea turtles during the nesting season, although this is not a universal finding and these data have rarely been collected during the internesting interval itself. There is mixed support for a trade-off between clutch size and the length of the interval. We conclude that the ‘water-limitation’ hypothesis is plausible for most sea turtle species, but requires direct experimentation.


2020 ◽  
Vol 287 (1930) ◽  
pp. 20200220
Author(s):  
Nathan F. Putman ◽  
Jesse Hawkins ◽  
Benny J. Gallaway

For decades, fisheries have been managed to limit the accidental capture of vulnerable species and many of these populations are now rebounding. While encouraging from a conservation perspective, as populations of protected species increase so will bycatch, triggering management actions that limit fishing. Here, we show that despite extensive regulations to limit sea turtle bycatch in a coastal gillnet fishery on the eastern United States, the catch per trip of Kemp's ridley has increased by more than 300% and green turtles by more than 650% (2001–2016). These bycatch rates closely track regional indices of turtle abundance, which are a function of increased reproductive output at distant nesting sites and the oceanic dispersal of juveniles to near shore habitats. The regulations imposed to help protect turtles have decreased fishing effort and harvest by more than 50%. Given uncertainty in the population status of sea turtles, however, simply removing protections is unwarranted. Stock-assessment models for sea turtles must be developed to determine what level of mortality can be sustained while balancing continued turtle population growth and fishing opportunity. Implementation of management targets should involve federal and state managers partnering with specific fisheries to develop bycatch reduction plans that are proportional to their impact on turtles.


2020 ◽  
Vol 7 ◽  
Author(s):  
Eduardo Cuevas ◽  
Nathan F. Putman ◽  
Abigail Uribe-Martínez ◽  
Melania C. López-Castro ◽  
Vicente Guzmán-Hernández ◽  
...  

In the Gulf of Mexico, the bulk of published studies for sea turtles have focused on northern (United States) waters where economic resources are centered, with fewer studies in the southern portion of the basin, resulting in significant knowledge gaps in these underrepresented areas. Similarly, publications on adult sea turtles are dominated by research on females that come ashore to nest and can be readily studied (e.g., through the collection of biological samples and the application of satellite-telemetry devices), whereas information on adult male sea turtles is scarce. The goal of this paper is to begin filling these knowledge gaps by synthesizing available data on adult male sea turtles in the southern Gulf of Mexico. We used satellite-telemetry, boat- and drone-based surveys, and stranding records combined with ocean circulation modeling to better understand the spatial distribution of male loggerhead (Caretta caretta), green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and Kemp’s ridley (Lepidochelys kempii) sea turtles in the southern Gulf of Mexico. These spatially explicit analyses will provide context for opportunistically collected data on male sea turtles and better contribute to the management and restoration of sea turtle populations that use the Gulf of Mexico. Moreover, this synthesis can serve as a launching point for directed studies on male sea turtles in this region.


2017 ◽  
Vol 284 (1868) ◽  
pp. 20171730 ◽  
Author(s):  
Katherine L. Mansfield ◽  
Milagros L. Mendilaharsu ◽  
Nathan F. Putman ◽  
Maria A. G. dei Marcovaldi ◽  
Alexander E. Sacco ◽  
...  

In the South Atlantic Ocean, few data exist regarding the dispersal of young oceanic sea turtles. We characterized the movements of laboratory-reared yearling loggerhead turtles from Brazilian rookeries using novel telemetry techniques, testing for differences in dispersal during different periods of the sea turtle hatching season that correspond to seasonal changes in ocean currents. Oceanographic drifters deployed alongside satellite-tagged turtles allowed us to explore the mechanisms of dispersal (passive drift or active swimming). Early in the hatching season turtles transited south with strong southward currents. Late in the hatching season, when currents flowed in the opposite direction, turtles uniformly moved northwards across the Equator. However, the movement of individuals differed from what was predicted by surface currents alone. Swimming velocity inferred from track data and an ocean circulation model strongly suggest that turtles' swimming plays a role in maintaining their position within frontal zones seaward of the continental shelf. The long nesting season of adults and behaviour of post-hatchlings exposes young turtles to seasonally varying ocean conditions that lead some individuals further into the South Atlantic and others into the Northern Hemisphere. Such migratory route diversity may ultimately buffer the population against environmental changes or anthropologic threats, fostering population resiliency.


2016 ◽  
Vol 283 (1832) ◽  
pp. 20160690 ◽  
Author(s):  
D. K. Briscoe ◽  
D. M. Parker ◽  
G. H. Balazs ◽  
M. Kurita ◽  
T. Saito ◽  
...  

Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their ‘lost years’ at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1–3 year old turtles released off Japan (29.7–37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population.


2017 ◽  
Vol 98 (6) ◽  
pp. 1525-1531 ◽  
Author(s):  
Suzana Machado Guimarães ◽  
Davi Castro Tavares ◽  
Cassiano Monteiro-Neto

The five sea turtle species occurring in Brazilian waters are susceptible to threats, including incidental catches by fisheries. Studies on incidental captures in fishing gears are the main focus of several conservation actions due to high sea turtle fishery mortality worldwide. This study provides the first evaluation of incidental sea turtle catches by industrial bottom trawl fisheries operating in Brazilian waters. Four twin-trawler vessels were monitored between July 2010 and December 2011 by captains who voluntarily completed logbooks. Forty-four turtles were captured during the 1996 tows (8313 fishing hours), resulting in a catch of 5.3 ± 0.8 turtles per 1000 h per unit effort. Captured species included the loggerhead turtle (Caretta caretta, 22 individuals), olive ridley turtles (Lepidochelys olivacea, 21 individuals) and one green turtle (Chelonia mydas). Water depth was the only variable that significantly affected sea turtle captures according to Generalized Linear Models. The capture rates reported in this study ranked sixth in relation to other published studies of similar fisheries occurring worldwide. Considering the importance of this region for sea turtles, the increasing evidence of sea turtle mortality and the goals of the National Action Plan for Conservation of Sea Turtles in Brazil, it is essential to identify the main threats towards these animals and propose mitigating solutions to reduce sea turtle mortality induced by fishing activities. This study provides results that may guide future research and goals in meeting sea turtle conservation strategies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246241
Author(s):  
David P. Robinson ◽  
Kevin Hyland ◽  
Gerhard Beukes ◽  
Abdulkareem Vettan ◽  
Aneeshkumar Mabadikate ◽  
...  

The rehabilitation of wildlife can contribute directly to the conservation of threatened species by helping to maintain wild populations. This study focused on determining the post-rehabilitation survival and spatial ecology of sea turtles and on comparing the movements of individuals with flipper amputations (amputees) to non-amputee animals. Our aims were to assess whether rehabilitated sea turtles survive after release, to compare and contrast the movement characteristics of the different species of sea turtles we tracked, and to examine whether amputees and non-amputees within species behaved similarly post-release. Twenty-six rehabilitated sea turtles from four species, including hawksbill Eretmochelys imbricata (n = 12), loggerhead Caretta caretta (n = 11), green Chelonia mydas (n = 2), and olive ridley Lepidochelys olivacea (n = 1) sea turtles from the United Arab Emirates were fitted with satellite tags before release. Rehabilitation times ranged from 89 to 817 days (mean 353 ± 237 days). Post-release movements and survival were monitored for 8 to 387 days (mean 155 ± 95 days) through satellite tracking. Tag data suggested that three tracked sea turtles died within four days of release, one after 27 days, and one after 192 days from what are thought to be anthropogenic factors unrelated to their pre-rehabilitation ailments. We then compared habitat use and movement characteristics among the different sea turtle species. Although half of all turtles crossed one or more international boundaries, dispersal varied among species. Loggerhead turtles had a high dispersal, with 80% crossing an international boundary, while hawksbill turtles displayed higher post-release residency, with 66% remaining within UAE territorial waters. Amputee turtles moved similarly to non-amputee animals of the same species. Loggerhead turtles travelled faster (mean ± sd = 15.3 ± 8 km/day) than hawksbill turtles (9 ± 7 km/day). Both amputee and non-amputee sea turtles within a species moved similarly. Our tracking results highlight that rehabilitated sea turtles, including amputees, can successfully survive in the wild following release for up to our ~one-year monitoring time therefore supporting the suitability for release of sea turtles that have recovered from major injuries such as amputations. However, more broadly, the high mortality from anthropogenic factors in the Arabian Gulf region is clearly a serious issue and conservation challenge.


2021 ◽  
Vol 7 ◽  
Author(s):  
Margaret M. Lamont ◽  
Darren Johnson

The neritic environment is rich in resources and as such plays a crucial role as foraging habitat for multi-species marine assemblages, including sea turtles. However, this habitat also experiences a wide array of anthropogenic threats. To prioritize conservation funds, targeting areas that support multi-species assemblages is ideal. This is particularly important in the Gulf of Mexico where restoration actions are currently ongoing following the Deepwater Horizon oil spill. To better understand these areas in the Gulf of Mexico, we characterized two multi-species aggregations of sea turtles captured in different neritic habitats. We described species composition and size classes of turtles, and calculated body condition index for 642 individuals of three species captured from 2011 to 2019: 13.6% loggerheads (Caretta caretta), 44.9% Kemp’s ridleys (Lepidochelys kempii) and 41.4% green turtles (Chelonia mydas). Species composition differed between the two sites with more loggerheads captured in seagrass and a greater proportion of green turtles captured in sand bottom. Turtles in sand bottom were smaller and weighed less than those captured in seagrass. Although small and large turtles were captured at both sites, the proportions differed between sites. Body condition index of green turtles was lower in sand habitat than seagrass habitat; there was no difference for Kemp’s ridleys or loggerheads. In general, smaller green turtles had a higher body condition index than larger green turtles. We have identified another habitat type used by juvenile sea turtle species in the northern Gulf of Mexico. In addition, we highlight the importance of habitat selection by immature turtles recruiting from the oceanic to the neritic environment, particularly for green turtles.


Sign in / Sign up

Export Citation Format

Share Document