scholarly journals Understanding Uncertainty in Probabilistic Floodplain Mapping in the Time of Climate Change

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1248
Author(s):  
Zahra Zahmatkesh ◽  
Shasha Han ◽  
Paulin Coulibaly

An integrated framework was employed to develop probabilistic floodplain maps, taking into account hydrologic and hydraulic uncertainties under climate change impacts. To develop the maps, several scenarios representing the individual and compounding effects of the models’ input and parameters uncertainty were defined. Hydrologic model calibration and validation were performed using a Dynamically Dimensioned Search algorithm. A generalized likelihood uncertainty estimation method was used for quantifying uncertainty. To draw on the potential benefits of the proposed methodology, a flash-flood-prone urban watershed in the Greater Toronto Area, Canada, was selected. The developed floodplain maps were updated considering climate change impacts on the input uncertainty with rainfall Intensity–Duration–Frequency (IDF) projections of RCP8.5. The results indicated that the hydrologic model input poses the most uncertainty to floodplain delineation. Incorporating climate change impacts resulted in the expansion of the potential flood area and an increase in water depth. Comparison between stationary and non-stationary IDFs showed that the flood probability is higher when a non-stationary approach is used. The large inevitable uncertainty associated with floodplain mapping and increased future flood risk under climate change imply a great need for enhanced flood modeling techniques and tools. The probabilistic floodplain maps are beneficial for implementing risk management strategies and land-use planning.

2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2015 ◽  
Vol 533 ◽  
pp. 542-556 ◽  
Author(s):  
Björn Guse ◽  
Jochem Kail ◽  
Johannes Radinger ◽  
Maria Schröder ◽  
Jens Kiesel ◽  
...  

2016 ◽  
Vol 8 (2) ◽  
pp. 163-175 ◽  
Author(s):  
Seth P. Tuler ◽  
Thomas Webler ◽  
Jason L. Rhoades

Abstract Numerous decision support tools have been developed to assist stormwater managers to understand future scenarios and devise management strategies. This paper presents one such tool, the Vulnerability, Consequences, and Adaptation Planning Scenarios (VCAPS) process, and reports on experiences from its deployment in 10 coastal communities on the Atlantic and Gulf coasts. VCAPS helps to elucidate local complexities, couplings, and contextual nuance through dialogue among technical experts and those with detailed contextual knowledge of a community. Participants in the process develop qualitative scenarios of climate change impacts and how different management strategies may prevent or mitigate undesirable consequences. The scenarios help stormwater managers diagnose potential problems that may emerge from climate change and variability, which can then be subject to further detailed analysis. The authors describe five challenges faced by stormwater managers and how insights that emerge from scenario-based processes like VCAPS can help address them: characterizing the implications of interacting climate stressors that originate stormwater, bringing all available expertise and local knowledge to bear on the problem of stormwater management, integrating local and scientific information about coupled human–environment systems, identifying management actions and their trade-offs, and facilitating planning for sustained coordination among multiple public and private entities.


2009 ◽  
Vol 13 (8) ◽  
pp. 1427-1438 ◽  
Author(s):  
M. J. Vepraskas ◽  
J. L. Heitman ◽  
R. E. Austin

Abstract. Hydropedology is well positioned to address contemporary issues resulting from climate change. We propose a six-step process by which digital, field-scale maps will be produced to show where climate change impacts will be greatest for two land uses: a) home sites using septic systems, and b) wetlands. State and federal laws have defined critical water table levels that can be used to determine where septic systems will function well or fail, and where wetlands are likely to occur. Hydrologic models along with historic rainfall and temperature data can be used to compute long records of water table data. However, it is difficult to extrapolate such data across land regions, because too little work has been done to test different ways for doing this reliably. The modeled water table data can be used to define soil drainage classes for individual mapping units, and the drainage classes used to extrapolate the data regionally using existing digital soil survey maps. Estimates of changes in precipitation and temperature can also be input into the models to compute changes to water table levels and drainage classes. To do this effectively, more work needs to be done on developing daily climate files from the monthly climate change predictions. Technology currently exists to use the NRCS Soil Survey Geographic (SSURGO) Database with hydrologic model predictions to develop maps within a GIS that show climate change impacts on septic system performance and wetland boundaries. By using these maps, planners will have the option to scale back development in sensitive areas, or simply monitor the water quality of these areas for pathogenic organisms. The calibrated models and prediction maps should be useful throughout the Coastal Plain region. Similar work for other climate-change and land-use issues can be a valuable contribution from hydropedologists.


2021 ◽  
Author(s):  
Mariya Gorlova

Land use planning recognizes the need for incorporating climate change adaptation strategies to address natural disaster reoccurrence. In 2013, the Rockefeller Foundation developed the 100 Resilient Cities (100RC) model to support initiatives related to climate change and resilience. Globally through the model, cities appointed Chief Resilience Officers (CROs) to develop a vision, lead implementation and establish long-term city resilience. Three major cities in Canada (Toronto, Vancouver and Montreal) are now RC100 cities and subsequently introduced the positions of CROs. The purpose of this research paper is to highlight the current state of interventions in Toronto water management strategies to emphasize the role land use planning can have in Resilience Strategy development. Recommendations will be made based on literature review, policies and best practices scan, as well as stakeholders’ interview analysis. Safety and wellbeing of citizenry are at the forefront of the urban agenda, requiring utmost attention to climate change and precautionary measures against natural disaster. Key words: land use planning, urban water management, Canada, resilient cities


2011 ◽  
Vol 15 (9) ◽  
pp. 2789-2803 ◽  
Author(s):  
M. Özdoğan

Abstract. This study investigates the effects of projected climate change on snow water availability in the Euphrates-Tigris basin using the Variable Infiltration Capacity (VIC) macro scale hydrologic model and a set of regional climate-change outputs from 13 global circulation models (GCMs) forced with two greenhouse gas emission scenarios for two time periods in the 21st century (2050 and 2090). The hydrologic model produces a reasonable simulation of seasonal and spatial variation in snow cover and associated snow water equivalent (SWE) in the mountainous areas of the basin, although its performance is poorer at marginal snow cover sites. While there is great variation across GCM outputs influencing snow water availability, the majority of models and scenarios suggest a significant decline (between 10 and 60 percent) in available snow water, particularly under the high-impact A2 climate change scenario and later in the 21st century. The changes in SWE are more stable when multi-model ensemble GCM outputs are used to minimize inter-model variability, suggesting a consistent and significant decrease in snow-covered areas and associated water availability in the headwaters of the Euphrates-Tigris basin. Detailed analysis of future climatic conditions point to the combined effects of reduced precipitation and increased temperatures as primary drivers of reduced snowpack. Results also indicate a more rapid decline in snow cover in the lower elevation zones than the higher areas in a changing climate but these findings also contain a larger uncertainty. The simulated changes in snow water availability have important implications for the future of water resources and associated hydropower generation and land-use management and planning in a region already ripe for interstate water conflict. While the changes in the frequency and intensity of snow-bearing circulation systems or the interannual variability related to climate were not considered, the simulated changes in snow water availability presented here are likely to be indicative of climate change impacts on the water resources of the Euphrates-Tigris basin.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rodolfo Silva ◽  
Hocine Oumeraci ◽  
M. Luisa Martínez ◽  
Valeria Chávez ◽  
Debora Lithgow ◽  
...  

Sandy coasts represent about one-third of the global coastline and are among the most valuable and most vulnerable areas for humans and many other species. Socio-economic development and climate change impacts, together with traditional engineering for shore protection, have pervasively resulted in coastal squeeze, thereby threatening coastal life and economic activities, and the very survival of coastal ecosystems. In the past, the responses to problems such as land loss, coastal erosion and flooding were primarily reactive, through gray engineering solutions, with little interest shown in the ecosystem processes impacted by coastal armoring. In recent decades, coastal management strategies have become more diverse, embracing traditional engineering solutions alongside ecosystem-based measures. Even so, many of these new strategies still fail to meet sustainability criteria. Inspired by Per Bruun’s “The Ten Demands for Coastal Protection” from 1972, this article attempts to consider these changes and knowledge acquired since the 1970s, in order to tentatively formulate “Ten Commandments” for the sustainability of sandy coasts in face of climate change and socio-economic development. As such, the paper offers a new vision and briefly summarizes good practices for the management of sandy coasts, particularly useful for those who, at whatever level of influence, could contribute to the long-term realization of this new vision.


2011 ◽  
Vol 8 (2) ◽  
pp. 3631-3666 ◽  
Author(s):  
M. Özdoğan

Abstract. This study investigates the effects of projected climate change on snow water availability in the Euphrates-Tigris basin using the Variable Infiltration Capacity (VIC) macro scale hydrologic model and a set of regional climate-change outputs from 13 global circulation models (GCMs) forced with two greenhouse gas emission scenarios for two time periods in the 21st century (2050 and 2090). The hydrologic model produces a reasonable simulation of seasonal and spatial variation in snow cover and associated snow water equivalent (SWE) in the mountainous areas of the basin, although its performance is poorer at marginal snow cover sites. While there is great variation across GCM outputs influencing snow water availability, the majority of models and scenarios suggest a significant decline (between 10 and 60 percent) in available snow water, particularly under the aggressive A2 climate change scenario and later in the 21st century. The changes in SWE are more stable when multi-model ensemble GCM outputs are used to minimize inter-model variability, suggesting a consistent and significant decrease in snow-covered areas and associated water availability in the headwaters of the Euphrates Tigris basin. Detailed analysis of future climatic conditions point to the combined effects of reduced precipitation and increased temperatures as primary drivers of reduced snowpack. Results also indicate a more rapid decline in snow cover in the lower elevation zones than the higher areas in a changing climate. The simulated changes in snow water availability have important implications for the future of water resources and associated hydropower generation and land-use management and planning in a region already ripe for interstate water conflict. While the changes in the frequency and intensity of snow-bearing circulation systems or the interannual variability related to climate were not considered, the simulated changes in snow water availability presented here are likely to be indicative of climate change impacts on the water resources of the Euphrates-Tigris basin.


Sign in / Sign up

Export Citation Format

Share Document