scholarly journals Recent Changes in Temperature and Precipitation of the Summer and Autumn Seasons over Fujian Province, China

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1900
Author(s):  
Zhiguo Ma ◽  
Qinyu Guo ◽  
Feiyue Yang ◽  
Huiling Chen ◽  
Wenqing Li ◽  
...  

Based on the observation data of daily temperature and precipitation in summer and autumn of 68 representative meteorological stations in Fujian Province from 1971 to 2018, using the climate Tendency Rate, Mann-Kendall trend test, Morlet wavelet analysis and other methods, this paper analyzes the variation trends of air temperature and annual precipitation and the wavelet periodic variation characteristics of annual precipitation time series in summer and autumn of Fujian Province over a period of approximately 48 years. The results show that over the approximately 48 years, the temperature and precipitation in summer and autumn in Fujian showed an obvious upward trend, which had a mutation around 2000, but the mutation time was different, and the precipitation was slightly earlier. The annual temperature and precipitation in summer and autumn experienced three oscillations on the 28a scale. In the 28a time scale of summer autumn seasonal oscillation, there are three negative centers and two positive centers. According to the characteristics of annual average temperature and annual precipitation in the first major cycle, the annual precipitation in summer and autumn will continue to increase in the future.

2015 ◽  
Vol 7 (1) ◽  
pp. 198-211 ◽  
Author(s):  
Qiang Fu ◽  
Tianxiao Li ◽  
Tienan Li ◽  
Heng Li

The wavelet theory, Mann-Kendall trend test and ArcGIS spatial analysis theory were used to analyze annual precipitation and mean temperature data that were collected at seven national weather stations in the Sanjiang Plain from 1956 to 2013 to identify the temporal-spatial patterns of annual precipitation changes caused by climate change conditions. The results showed that the climate in the Sanjiang Plain experienced a significant warming trend over the past 50 years, with the temperature increasing by 1.35 °C since the 1960s. Additionally, the precipitation also exhibited certain trend characteristics, which revealed a larger difference in different areas. The annual precipitation exhibited 23-year and 12-year periodic variation characteristics, and the period with above-average annual precipitation levels is expected to continue after 2013. The spatial distributions of the mean annual precipitation for different years were different, whereas the spatial distribution of the multi-year mean precipitation was relatively uniform. The annual variation amplitude of the annual precipitation in the central area was larger than that in the south. The overall inter-annual fluctuation of the annual precipitation was relatively small with a mostly normal distribution. The results can provide guidance for scientific investigations and the reasonable use of rainfall resources in the Sanjiang Plain.


2014 ◽  
Vol 1010-1012 ◽  
pp. 462-466
Author(s):  
Bin Bin Chen ◽  
Kai Yang ◽  
Qiu Ping Zheng ◽  
Wen Lin ◽  
Hong Wang

Based on the meteorological observation data of 4 acid rain monitoring stations (Shaowu Station, Fuzhou Station, Yong’an Station and Xiamen Station) during 2007 to 2012 in Fujian Province, the characteristics of the acid rain were analyzed. The results showed that acid rain pollution was common in Fujian Province while showing a reducing trend overall. The time from 2007 to 2010 was acid rain pollution period of large precipitation acidity and high strong acid rain frequency. And the time from 2011 to 2012 was acid rain improving period with precipitation acidity weakening and strong acid rain frequency declining. It showed an obviously seasonal feature for acid rain. Acid rain pollution was relatively heavy in winter while light in summer in Fuzhou, Shaowu and Xiamen. But the seasonal distribution in Yong’an was just the opposite. There were large differences in the degree of acid rain pollution in different regions. The acid rain pollution in Shaowu was heaviest belonging to the strong acid rain area. And the second was Fuzhou belonging to the moderate acid rain area. Xiamen and Yong’an belonged to the light acid rain area with lighter pollution. The acid rain pollution showed various degrees of improvements in Shaowu, Fuzhou and Xiamen. Especially in Fuzhou the improvement was particularly evident as the best condition in recent years. While in Yong’an the acid rain pollution had aggravated somewhat in recent years with the acid rain frequency increasing and the precipitation acidity enhancing.


2021 ◽  
Vol 50 (4) ◽  
pp. 1133-1142
Author(s):  
Xinhui Xu ◽  
Xingyu Zhou ◽  
Zhenqiang Liu ◽  
Xiaoqing Zhao

Drought is the main natural disaster in Yunnan Province, China. In the present paper monthly precipitation observation data from Yunnan Province durign the period of 1966 - 2015 were used. From the data, the selected percentage of precipitation anomalies was used as drought index. By applying the ArcGIS inverse distance interpolation method and Mann Kendall non parametric trend test method the spatiotemporal variation characteristics of drought in Yunnan province were analyzed. Results show that the drought in Yunnan Province has a slightly upward trend. In spring and winter, there is a tendency to become wet but in summer and autumn, the tendency is shown by dry condition. It was observed that the studied area is prone to a severe drought in winter, and there will be more droughts in the east part, the northwest part, and the southwest part of Yunnan province when it is autumn. In other periods, severe doughts usually attack the middle part of Yunnan province, which can be proved by the characteristics of vegetation distribution. Bangladesh J. Bot. 50(4): 1133-1142, 2021 (December)


Author(s):  
Chunli Zhao ◽  
Jianguo Chen ◽  
Peng Du ◽  
Hongyong Yuan

It has been demonstrated that climate change is an established fact. A good comprehension of climate and extreme weather variation characteristics on a temporal and a spatial scale is important for adaptation and response. In this work, the characteristics of temperature, precipitation, and extreme weather distribution and variation is summarized for a period of 60 years and the seasonal fluctuation of temperature and precipitation is also analyzed. The results illustrate the reduction in daily and annual temperature divergence on both temporal and spatial scales. However, the gaps remain relatively significant. Furthermore, the disparity in daily and annual precipitation are found to be increasing on both temporal and spatial scales. The findings indicate that climate change, to a certain extent, narrowed the temperature gap while widening the precipitation gap on temporal and spatial scales in China.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Lingling Shen ◽  
Li Lu ◽  
Tianjie Hu ◽  
Runsheng Lin ◽  
Ji Wang ◽  
...  

Homogeneity of climate data is the basis for quantitative assessment of climate change. By using the MASH method, this work examined and corrected the homogeneity of the daily data including average, minimum, and maximum temperature and precipitation during 1978–2015 from 404/397 national meteorological stations in North China. Based on the meteorological station metadata, the results are analyzed and the differences before and after homogenization are compared. The results show that breakpoints are present pervasively in these temperature data. Most of them appeared after 2000. The stations with a host of breakpoints are mainly located in Beijing, Tianjin, and Hebei Province, where meteorological stations are densely distributed. The numbers of breakpoints in the daily precipitation series in North China during 1978–2015 also culminated in 2000. The reason for these breakpoints, called inhomogeneity, may be the large-scale replacement of meteorological instruments after 2000. After correction by the MASH method, the annual average temperature and minimum temperature decrease by 0.04°C and 0.06°C, respectively, while the maximum temperature increases by 0.01°C. The annual precipitation declines by 0.96 mm. The overall trends of temperature change before and after the correction are largely consistent, while the homogeneity of individual stations is significantly improved. Besides, due to the correction, the majority series of the precipitation are reduced and the correction amplitude is relatively large. During 1978–2015, the temperature in North China shows a rise trend, while the precipitation tends to decrease.


2012 ◽  
Vol 616-618 ◽  
pp. 1496-1499
Author(s):  
Guo Wei Xu ◽  
Xin Tian Yuan ◽  
Shu Ling Huang ◽  
Yang Gao

Selecting 50 years temperature observation data from1959 to 2008 and using statistical analysis, this paper revealed the characteristics of temperature variation in Hefei city. The results show that in past 50 years, the annual average temperature in Hefei city greatly increased, tendency rate of temperature change was 0.246°C/10 a, especially after 1993, the temperature increased significantly; the temperature in four seasons all increased somewhat, warming was most prominent in spring. The most significant temperature increase was in spring, winter following behind, temperature increase in autumn was not obvious, and the average summer temperature increased the most unobvious.


2020 ◽  
Vol 11 (S1) ◽  
pp. 289-309 ◽  
Author(s):  
Hrachuhi Galstyan ◽  
Shamshad Khan ◽  
Hovik Sayadyan ◽  
Artur Sargsyan ◽  
Tatevik Safaryan

Abstract The primary goal of the study is to analyze the spatial-temporal trends and distribution of flood events in the context of climate change in Armenia. For that purpose, some meteorological parameters, physical-geographical factors and the flood events data were studied for the 1994–2019 period. The linear trends demonstrate an increasing tendency of air temperature and precipitation. Those trends expressed increased flood occurrences, especially for the 2000s, whereas the Mann–Kendall (MK) trend test reveals no significant change. The number of flood events reaches its maximum in 2011 with its peak in May. Out of 191 flood events, half of the occurrences are recorded in the flat areas and southern aspects of the mountains (22% of the country's territory). There is a certain clustering of flood events in the areas with up to 5° slopes (66% of flood events). The most flood vulnerable areas were analyzed and mapped via Geographical Information System (GIS). The GIS-based mapping shows the location of flood vulnerable areas in the central, northern parts of the country, and the coastal areas of Lake Sevan. Our methodological approach elaborates the localization of flood-prone sites. It can be used for the flood hazard assessment mapping and risk management.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


2011 ◽  
Vol 137 ◽  
pp. 286-290 ◽  
Author(s):  
Xi Chun ◽  
Mei Jie Zhang ◽  
Mei Ping Liu

The objective of this study is to analyse the climate changing patterns chronologically for exposing the coincident relationships between the lake area fluctuation and the climate change in Qehan lake of Abaga county of Inner Mongolia. The results show that there’s highly interrelation between the changes of the lake area and the climatic factors here, the annual average temperature and annual evaporation are negatively interrelate to the lake area fluctuation, and the annual precipitation interrelate to it is positive. The lake area has descended about 75 km2 during the nearly past 40 years. There were about two considerable lake expansions in 1973, 1998 through the generally lake area descending process.


2016 ◽  
Vol 29 (23) ◽  
pp. 8285-8299 ◽  
Author(s):  
Andrea J. Dittus ◽  
David J. Karoly ◽  
Sophie C. Lewis ◽  
Lisa V. Alexander ◽  
Markus G. Donat

Abstract The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario.


Sign in / Sign up

Export Citation Format

Share Document