scholarly journals Adsorption Kinetics and Isotherm Study of Basic Red 5 on Synthesized Silica Monolith Particles

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2803
Author(s):  
Sultan Alam ◽  
Barkat Ullah ◽  
Muhammad Sufaid Khan ◽  
Najeeb ur Rahman ◽  
Luqman Khan ◽  
...  

The Silica monolith particles (SMP) were prepared from Tetra-Methyl-Ortho-Silicate (TMOS) and characterized by Fourier transforms infrared (FTIR), Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and surface area analyzer. FTIR analysis showed the Si−O stretching confirming SMP formation. SEM analysis provided information about the mean diameter of SMP (1−5 µm). EDX confirmed the presence of silicon and oxygen in the SMP. Moreover, the calculated surface area for SMP was found to be around 367 m2/g, whereas BJH pore size distributed particles were 87.15 along with the total pore volume and pore radius of 0.073 cm3/g and 16.627 Å, respectively. Besides, the removal efficiency was found to be about 96%. Various kinetic equations were used to calculate the adsorption parameters. Overall, the results show that the most appropriate model for the kinetics data was the pseudo-second order kinetics model while the mechanism of adsorption was best explained by the Langmuir isotherm. The highest removal of Basic Red 5 dye after 120 min at 298 K was 576 mg/g. Moreover, the thermodynamics parameters (Enthalpy, Gibb’s energy, and Entropy) were also estimated. The ΔH° (0.995 kJ/mol) value depicted the endothermic nature of the process. The non-spontaneous aspect of the process was evident from the ΔG° values which were 60.431, 328.93, and 339.5 kJ/mol at 293, 303, and 313 K, respectively. From the high removal efficiency value, it can be concluded that the prepared adsorbent can be a potential adsorbent in the reclamation of dyes from wastewater.

2016 ◽  
Vol 857 ◽  
pp. 475-479 ◽  
Author(s):  
M.S. Mohammed Yahya ◽  
Jeyashelly Andas ◽  
Ghani Zaidi Ab

In this work, mesoporous activated carbon with high surface area was synthesized from swamp taro stalk by single step ZnCl2 activation. The synthesized activated carbon was characterized by Na2S2O3 volumetric method, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and N2 adsorption-desorption analyses. Under the single step ZnCl2 activation, the registered iodine number, BET surface area, total pore volume and pore diameter were 1087.57 mgg-1, 1242.26 m2g-1, 0.73cm3g-1 and 3.72 nm respectively with yield of 25.34%. SEM analysis evidenced the well-formation of porous structure. Type IV isotherm with H2 loops obtained from N2-sorption studies indicates the ink bottles shape mesoporous network structure. This research proved the successful conversion of plant waste into high grade activated carbon.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2133-2146
Author(s):  
Gervais Kounou Ndongo ◽  
Ndi Julius Nsami ◽  
Ketcha Joseph Mbadcam

Ferromagnetic activated carbon (FAC) was prepared through impregnation of cassava peel with FeCl3 (3.75%) solution and pyrolyzed at 800 °C. Samples were characterized using iodine number, methylene blue number, X-ray fluorescence, Fourier transformation infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy, elemental analysis and N2 adsorption for surface area determination. The proximate analysis of cassava peel showed that the moisture content, fixed carbon, ash content, and the volatile matter were 3.52%, 82.97%, 4.97%, and 8.54%, respectively. The prepared FAC had a BET surface area of 405.9 m2/g, pore size of 2.03 nm and total pore volume of 0.11 cm3/g. The SEM analysis showed the presence of both micro and mesopores on the FAC sample. The XRD pattern of FAC showed the presence of characteristic peaks of magnetite–maghemite, confirming that the prepared material is ferromagnetic. According to the experimental results, the cassava peels are considered as appropriate raw material for FAC preparation.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2021 ◽  
Vol 13 (8) ◽  
pp. 4184
Author(s):  
Zhiying Xu ◽  
Caterina Valeo ◽  
Angus Chu ◽  
Yao Zhao

This research investigates the use of a common food waste product for removing four different types of metals typically found in stormwater. Whole, unprocessed oyster shells are explored for use in stormwater management infrastructure that addresses water quality concerns. The role of the shells’ surface area, exposure time, and the solution’s initial concentration on the removal efficiency were examined. Beaker scale experimental results demonstrated very good efficiency by the oyster shells for removing copper ions (80–95%), cadmium ions (50–90%), and zinc ions (30–80%) but the shells were not as effective in removing hexavalent chromium (20–60%). There was a positive relationship between initial concentration and removal efficiency for copper and zinc ions, a negative relationship for hexavalent chromium, and no relationship was found for cadmium ions. There was also a positive relationship between surface area and removal efficiency, and exposure time and removal efficiency. However, after a certain exposure time, the increase in removal efficiency was negligible and desorption was occasionally observed. A mid-scale experiment to mimic real-world conditions was conducted in which continuous inflow based on a 6-h design storm was applied to 2.7 kg of whole, unprocessed oyster shells. The shells provided an 86% and an 84% removal efficiency of cadmium and copper ions, respectively, in one day of hydraulic retention time. No removal was observed for hexavalent chromium, and zinc ion removal was only observed after initial leaching. This work has significant implications for sustainable stormwater infrastructure design using a material commonly found in municipal food waste.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


2011 ◽  
Vol 130-134 ◽  
pp. 856-859
Author(s):  
Chun Sheng Ding ◽  
Yang Ping Fu ◽  
Qian Fen Zhu ◽  
Jing Fu

In this experiment quartz sand was chosen as a carrier to be coated by aluminous salt under alkaline condition, and then the specific surface area was tested, and the adsorption capability and Cd2+ removal influencing factors of modified sand were studied. The investigation results showed that the specific surface area of modified sand was 75.244m2/g which was 9.38 times of that of original sand; the removal efficiency of Cd2+ by aluminous salt modified sand reached 59% contrast to 39% of original sand with pH 7.00. It was also found that the removal efficiency of Cd2+ by the aluminous salt modified sand was reduced with the increase of initial concentration of Cd2+ solution, and was enhanced with the increase of pH value, the Cd2+ removal efficiency was almost 71% with pH 9.0.


2017 ◽  
Vol 11 (5) ◽  
pp. 47 ◽  
Author(s):  
Heman A. Smail ◽  
Kafia M. Shareef ◽  
Zainab H. Ramli

The adsorption of lead (Pb II) ion on different types of synthesized zeolite was investigated. The BET surface area, total pore volume & average pore size distribution of these synthesized zeolites were determined by adsorption isotherms for N2, the surface area & total pore volume of their sources were found by adsorption isothermN2.The adsorption equilibrium was measured after 24h at room temperature (RT) & concentration 10mg.L-1 of Pb (II) was used. The adsorption of heavy metal Pb (II) on four different prepared zeolites (LTA from Montmorillonite clay, FAU(Y)-B.H (G2) from Barley husk, Mordenite (G1) from Chert rock, FAU(X)-S.C (G3) from shale clay & modified Shale clay by oxalic acid (N1) & sodium hydroxide (N2)), were compared with the adsorption of their sources by using static batch experimental method. The major factors affecting the heavy metal ion sorption on different synthesized zeolites & their sources were investigated. The adsorption equilibrium capacity (Qm) of Pb (II) ion for different synthesized zeolites ordered from (N1>N2>LTA>G3>G2>G1&for their sources ordered Shale clay >Montmorilonite> Barley husk>Chert rock. The atomic absorption spectrometry was used for analysis of lead heavy metal ion, the obtained results in this study showed that the different synthesized zeolites were efficient ion exchanges for removing heavy metal, in particular, the modified zeolite from shale clay by oxalic acid.


2021 ◽  
Vol 8 (1) ◽  
pp. 55-63
Author(s):  
Amir Nasser Alibeigi ◽  
Neda Javid ◽  
Majid Amiri Gharaghani ◽  
Zhila Honarmandrad ◽  
Fatemeh Parsaie

Background: The presence of antibiotics such as metronidazole in wastewater even at low concentrations requires searching for a suitable process such as advanced oxidation process (AOP) to reduce the level of pollutants to a standard level in water. Methods: In this study, zinc oxide (ZnO) nanoparticles were synthesized by thermal method using zinc sulfate (ZnSO4 ) as a precursor, then, stabilized on stone and was used as a catalyst, in order to degrade metronidazole by photocalytic process. Effective factors on the removal efficiency of metronidazole including the initial metronidazole concentration, contact time, pH, and 0.9 gL-1 ZnO stabilized on the stone surface were investigated. Results: The X-ray diffraction (XRD) studies showed that the synthesized nanomaterials have hexagonal Wurtzite structure. Also, scanning electron microscopy (SEM) analysis revealed that the average crystalline size of the synthesized ZnO particles was in the range of 1.9-3.2 nm. The spectra represented a sharp absorption edge at 390 nm for ZnO nanoparticles corresponding to band gap of 3.168 eV. The BET-BJH specific surface area of the synthesized ZnO nanoparticles was 25.504 m2 /g. The EDS spectrum of ZnO nanoparticles showed four peaks, which were identified as Zn and O. The maximum removal efficiency was 98.36% for the synthetic solution under a specific condition (pH = 11, reaction time = 90 minutes, ZnO concentration = 0.9 gL-1, and the initial concentration of metronidazole = 10 mgL-1). The photocatalytic degradation was found to follow pseudo-first-order degradation kinetics. Conclusion: Therefore, the ZnO nanoparticles synthesized by thermal decomposition are suitable and effective photocatalytic materials for degradation of pharmaceutical contaminants.


Author(s):  
Andaru Dena Prasiwi ◽  
Wega Trisunaryanti ◽  
Triyono Triyono ◽  
Iip Izul Falah ◽  
Darma Santi ◽  
...  

Synthesis of mesoporous carbon from Merbau wood (Intsia spp.) waste by microwave method as nickel catalyst support for α-cellulose hydrocracking had been carried out. The Merbau wood sawdust was carbonized at 800 °C to produce C800 and the C800 was treated by microwave irradiation (399 W) for 5 min to produce C800MW. The Merbau wood flakes, which were only treated by microwave irradiation (399 Watts) for 30 min produced CMW. Wet impregnation technique was carried out to disperse the Ni metal (1.0, 1.5, and 2.0 wt.%) onto the best mesoporous carbon. The mesoporous carbons were analyzed by Fourier Transform Infra-Red Spectroscopy (FTIR), Surface Area Analyzer (SAA) and Scanning Electron Microscopy (SEM). The hydrocracking of pyrolyzed α-cellulose was carried out at 400 °C. The liquid product was analyzed by Gas Chromatograph-Mass Spectrometer (GC-MS). The results showed that the C800MW was the best performance carbon and it had a specific surface area, total pore volume, average pore diameter and acidity of 364.12 m2/g, 0.28 cm3/g, 3.03 nm, and 2.18 mmol/g, respectively. The Ni1.5/C800MW catalyst produced the highest conversion of liquid product (58.76 wt.%) than the Ni1/C800MW (57.51 wt.%) and Ni2/C800MW (34.18 wt.%).


Sign in / Sign up

Export Citation Format

Share Document