scholarly journals Removal of Cd (II) Ions from Bioretention System by Clay and Soil Wettability

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3164
Author(s):  
Tong Xu ◽  
Jiacheng Yu ◽  
Dongjian Cai ◽  
Zhaoyang You ◽  
Kinjal J. Shah

In this work, a silane modifier with benzyl substitutes (OFS-B) and linear substitutes (OFS-L) was used to modify bentonite clay and soil, and the results were characterized by Fourier transform-infrared absorption spectroscopy (FT-IR) and powder-X-ray diffraction (XRD) analysis. A contact angle analysis was performed to determine the wettability of modified clay and soil. The findings revealed that silane-modified OFS-L clay and soil produced wettable surfaces, while OFS-B exhibited hydrophobic properties. These clays and soils were used in a bioretention system for Cd (II) removal. In the study, seven different types of bioretention systems, including natural, OFS-L, and OFS-B modified clay and soil, as well as natural, OFS-L, and OFS-B modified soil, were applied to Cyperus alternifolius plants without an additional layer. The removal capacity of Cd (II) was measured in the following order: modified clay > modified soil > original clay/soil > no layer, i.e., 99.48%, 92.22%, 88.10/78.5%, and 30.0%, respectively. OFS-L removed more Cd (II) than OFS-B during the modification. OFS-L now improves the bioavailability and accumulation of Cd (II) in the plant (18.5 µg/g) and has a higher chlorophyll-b concentration (1.92 mg/g fresh weight) than other systems. The wettable clay exhibited clay leaching into the various levels of the bioretention system. In the bioretention system, benzyl substituted clay prevented the penetration of water and formed a Cd (II) agglomeration. When compared to non-wettable modifiers, these results indicated that wettable clay material could be a capable material for removing Cd (II).

2021 ◽  
Author(s):  
MAZOURI BELHADRI ◽  
Adel Mokhtar ◽  
Abdelkader Bengueddach Bengueddach ◽  
mohamed sassi

Abstract The current study focused on the modification of Algerian bentonite clay (Bent) with the product of hydrolysis of 3-aminopropyltriethoxysilane (APTES) using the intercalation process. The modified clay (Bent-APTES) was investigated as an adsorbent solid for methylene blue dye (MB) removal from wastewater.The Bent-APTES was characterized by X-ray diffraction (XRD), chemical analyses, Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The cationic exchange capacity was also determined. Several adsorption parameters were evaluated on the adsorption performance. The results showed that the equilibrium adsorption data was found to fit better to the Langmuir adsorption model, and the adsorption capacity for the removal of MB on Bent-APTES was 217.39 mg g-1. The kinetic process of adsorption could be described by the pseudo-second order model. Consequently, the modified clay could be served as an efficient adsorbent for cationic dyes in wastewater treatment.


2019 ◽  
Vol 958 ◽  
pp. 69-73 ◽  
Author(s):  
Mayra Keroly Sales Monteiro ◽  
Victor Rafael Leal Oliveira ◽  
Francisco Klebson Gomes Santos ◽  
Eduardo Lins Barros Neto ◽  
Ricardo Henrique de Lima Leite ◽  
...  

This study considered the effect of modified and unmodified bentonite clay on the thermal properties of films based on cassava starch. The bentonite clay was modified in the presence of cetyl trimethyl ammonium bromide (CTAB). The attainment of exfoliated or intercalated nanocomposite was characterized by X-ray diffraction (XRD) and Fourier transform by infrared radiation (FTIR). In XRD, it was verified that the cassava starch dispersed the modified clay in an exfoliated way and unmodified clay in an intercalated way. In the FTIR it was characterized that the cassava starch interacted more with the modified bentonite clay compared to unmodified. Finally, thermogravimetric curves showed the thermal property of the starch films concluding that the modified clay was the reinforcing material that contributed the most to the thermal stability of the cassava starch film, retarding its decomposition point, around 35oC , in relation to the pure starch film.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (1) ◽  
pp. 17-23
Author(s):  
KEVIN TAYLOR ◽  
RICH ADDERLY ◽  
GAVIN BAXTER

Over time, performance of tubular backpulse pressure filters in kraft mills deteriorates, even with regular acid washing. Unscheduled filter replacement due to filter plugging results in significant costs and may result in mill downtime. We identified acid-insoluble filter-plugging materials by scanning electron microscope/energy-dispersion X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis in both polypropylene and Gore-Tex™ membrane filter socks. The major filter-plugging components were calcium sulfate (gypsum), calcium phosphate (hydroxylapatite), aluminosilicate clays, metal sulfides, and carbon. We carried out detailed sample analysis of both the standard acid-washing procedure and a modified procedure. Filter plugging by gypsum and metal sulfides appeared to occur because of the acid-washing procedure. Gypsum formation on the filter resulted from significant hydrolysis of sulfamic acid solution at temperatures greater than 130°F. Modification of the acid-washing procedure greatly reduced the amount of gypsum and addition of a surfactant to the acid reduced wash time and mobilized some of the carbon from the filter. With surfactant, acid washing was 95% complete after 40 min.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5970
Author(s):  
Nabil Al-Zaqri ◽  
Mohammed Suleiman ◽  
Anas Al-Ali ◽  
Khaled Alkanad ◽  
Karthik Kumara ◽  
...  

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Giriraj Tailor ◽  
Jyoti Chaudhay ◽  
Deepshikha Verma ◽  
Bhupendra Kr. Sarma

AbstractThe present study reports the novel synthesis of Zinc nanoparticles (Zn NPs) by thermal decomposition method and its characterisation by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X-ray Diffraction Measurements (XRD). Synthesis of Zn NPs was achieved by using thermosetting polymer and zinc salts as precursor. Zn NPs were obtained on calcination at 850 °C for 30 min. SEM study reveals that synthesized nanoparticles are spherical in shape. XRD analysis shows that the Zn NPs formed are low crystalline in nature.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


Sign in / Sign up

Export Citation Format

Share Document