scholarly journals A Biological Method of Treating Surface Water Contaminated with Industrial Waste Leachate

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3644
Author(s):  
Justyna Zamorska ◽  
Izabela Kiełb-Sotkiewicz

The progressive chemicalization of all areas of everyday life and the development of the industry cause the appearance of various types of pollutants, both in groundwater and surface waters. Kalina Pond (Świętochłowice, Poland) is an example of a degraded water reservoir as a result of many years of activity, among others hard coal mines, storing metallurgical waste by zinc plants, and the activities of the Hajduki Chemical Plants from Chorzów. Inadequate securing of waste heaps resulted in the penetration of pollutants, i.e., phenol, petroleum compounds, PAHs, cyanides, and heavy metals. The aim of the research was to determine the suitability of biopreparations for the removal of pollutants. The research used a bacterial biopreparation from BioArcus, “DBC plus type R5”, to remove petroleum compounds and phenol. Then, in order to restore the microbiological balance, “ACS ODO-1” from the biopreparation was used. The research was carried out in laboratory conditions, using three variants: direct dosing of biopreparations, dosing of biopreparations previously activated by multiplication on the medium, and dosing of biopreparations into water after filtration on a diatomite bed. The optimal method of recultivating water from a reservoir was to filter this water through a diatomite bed and then dose the multiplied bacteria. After the filtration process, the obtained percentage of TOC reduction allowed for the rapid development of microorganisms from the biopreparation, despite the 100 times lower dose used. In addition, the application of lyophilized biopreparation to contaminated water resulted in a very fast biodegradation effect of pollutants, despite the high concentration of numerous toxic compounds.

1997 ◽  
Vol 35 (11-12) ◽  
pp. 381-384 ◽  
Author(s):  
U. Zuckerman ◽  
D. Gold ◽  
G. Shelef ◽  
R. Armon

During a period of 9 months (May 1995-January 1996), various environmental sources were investigated for the presence of Giardia and Cryptosporidium in Israel. Out of 15 samples from five streams, 12 were positive for Cryptosporidium (80%) with an average concentration of 0.04–1.9 oocysts/l and 8 were positive for Giardia (53.3%) with 0.05–0.78 cysts/l. Two springs were also tested and found positive for Cryptosporidium and (0.54 oocysts/l) only. The main drinking water reservoir of Israel, Lake Kineret, was also sampled 6 times at two sites. Cryptosporidium was isolated in 4/6 samples (66.6%) at an average concentration of 0.3–1.09 oocysts/l while Giardia was present in 5/6 samples (83.3%), 0.135–16.2 cysts/l. Drinking water entering a filtration pilot plant was also tested and found positive for Cryptosporidium in 23/35 samples (0–317 oocysts/l) and 8/35 for Giardia (0–16.7 cysts/l). In order to evaluate some potential inputs of contamination of the drinking water sources, two possible contributors were tested: domestic sewage and cowshed effluents. In sewage effluents, 3/3 samples were positive for both Cryptosporidium and Giardia. The oocysts and cysts were present at 8.3–8.05/l and 5–27.3/l respectively. In cowshed effluents, 1/6 samples was positive for Cryptosporidium at a high concentration (3,630 oocysts/l) but no Giardia cysts were found. The levels of Cryptosporidium and Giardia oocysts and cysts isolated from these environmental samples may present a public health hazard although no major outbreaks have so far been reported in Israel.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Srećko Bevandić ◽  
Rosie Blannin ◽  
Jacqueline Vander Auwera ◽  
Nicolas Delmelle ◽  
David Caterina ◽  
...  

Mine wastes and tailings derived from historical processing may contain significant contents of valuable metals due to processing being less efficient in the past. The Plombières tailings pond in eastern Belgium was selected as a case study to determine mineralogical and geochemical characteristics of the different mine waste materials found at the site. Four types of material were classified: soil, metallurgical waste, brown tailings and yellow tailings. The distribution of the mine wastes was investigated with drill holes, pit-holes and geophysical methods. Samples of the materials were assessed with grain size analysis, and mineralogical and geochemical techniques. The mine wastes dominantly consist of SiO2, Al2O3 and Fe2O3. The cover material, comprising soil and metallurgical waste is highly heterogeneous in terms of mineralogy, geochemistry and grain size. The metallurgical waste has a high concentration of metals (Zn: 0.1 to 24 wt.% and Pb: 0.1 to 10.1 wt.%). In the tailings materials, Pb and Zn vary from 10 ppm to 8.5 wt.% and from 51 ppm to 4 wt.%, respectively. The mining wastes comprises mainly quartz, amorphous phases and phyllosilicates, with minor contents of Fe-oxide and Pb- and Zn-bearing minerals. Based on the mineralogical and geochemical properties, the different potential applications of the four waste material types were determined. Additionally, the theoretical economic potential of Pb and Zn in the mine wastes was estimated.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3850
Author(s):  
Bartłomiej Podsiadły ◽  
Andrzej Skalski ◽  
Marcin Słoma

Rapid development of additive manufacturing and new composites materials with unique properties are promising tools for fabricating structural electronics. However, according to the typical maximum resolution of additive manufacturing methods, there is no possibility to fabricate all electrical components with these techniques. One way to produce complex structural electronic circuits is to merge 3D-printed elements with standard electronic components. Here, different soldering and surface preparation methods before soldering are tested to find the optimal method for soldering typical electronic components on conductive, 3D-printed, composite substrates. To determine the optimal soldering condition, the contact angles of solder joints fabricated in different conditions were measured. Additionally, the mechanical strength of the joints was measured using the shear force test. The research shows a possibility of fabricating strong, conductive solder joints on composites substrates prepared by additive manufacturing. The results show that mechanical cleaning and using additional flux on the composite substrates are necessary to obtain high-quality solder joints. The most repeatable joints with the highest shear strength values were obtained using reflow soldering together with low-temperature SnBiAg solder alloy. A fabricated demonstrator is a sample of the successful merging of 3D-printed structural electronics with standard electronic components.


2016 ◽  
Vol 35 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Moshood Keke Mustapha ◽  
Joy Chinenye Ewulum

AbstractHeavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP) remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.


Soil Research ◽  
2020 ◽  
Vol 58 (8) ◽  
pp. 737
Author(s):  
Lu Xu ◽  
Raphael A. Viscarra Rossel ◽  
Juhwan Lee ◽  
Zhichun Wang ◽  
Hongyuan Ma

Soil salinisation is a global problem that hinders the sustainable development of ecosystems and agricultural production. Remote and proximal sensing technologies have been used to effectively evaluate soil salinity over large scales, but research on digital camera images is still lacking. In this study, we propose to relate the pixel brightness of soil surface digital images to the soil salinity information. We photographed the surface of 93 soils in the field at different times and weather conditions, and sampled the corresponding soils for laboratory analyses of soil salinity information. Results showed that the pixel digital numbers were related to soil salinity, especially at the intermediate and higher brightness levels. Based on this relationship, we employed random forest (RF) and partial least-squares regression (PLSR) to model soil salt content and ion concentrations, and applied root mean squared error, coefficient of determination and Lin’s concordance correlation coefficient to evaluate the accuracy of models. We found that ions with high concentration were estimated more accurately than ions with low concentrations, and RF models performed overall better than PLSR models. However, the method is only suitable for bare land of coastal soil, and verification is needed for other conditions. In conclusion, a new approach of using digital camera images has good potential to predict and manage soil salinity in the context of precision agriculture with the rapid development of unmanned aerial vehicles.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4096
Author(s):  
Beata Kurc ◽  
Piotr Lijewski ◽  
Łukasz Rymaniak ◽  
Paweł Fuć ◽  
Marita Pigłowska ◽  
...  

The paper describes the investigations of the physicochemical properties of biocoal, a solid fuel obtained following the carbonization of rice starch. The production of biocoal (carbonization) was completed at the temperature of 600 °C in the nitrogen atmosphere. As a result of the carbonization, amorphous carbon with high monodispersity was obtained, devoided of oxygen elements and was a very well developed BET specific surface—360 m2 g−1. The investigations of the technical parameters have confirmed a very high concentration of energy. The calorific value of 53.21 MJ kg−1 and the combustion heat of 54.92 MJ kg−1 are significantly higher than those of starch before carbonization (18.72 MJ kg−1 and 19.43 MJ kg−1, respectively) and these values for typical biomass fuels. These values are also greater than those of hard coal. Other advantageous features of the obtained fuel are low ash (0.84%) and moisture content. These features predispose this fuel for the application as an alternative to conventional fuels.


2013 ◽  
Vol 101 (4) ◽  
pp. 45001 ◽  
Author(s):  
G. H. Ni ◽  
Y. Zhao ◽  
Y. D. Meng ◽  
X. K. Wang ◽  
H. Toyoda

Author(s):  
Suhardi -

Rapid development in Bekasi City, Indonesia, requires the support of adequate facilities and infrastructure, including the availability of raw water. Raw water potential for Bekasi City is very limited. Therefore, this study aims to examine the potential of Bekasi River as a source of raw water for Bekasi City. Therefore, this study aims to examine the potential of Bekasi River as a source of raw water for Bekasi City. Research methodologies include secondary data collection, water availability analysis using dependable flow (weibull method), water demand analysis, water balance analysis (water balance), storage capacity analysis, water quality analysis. Result showed that Bekasi River water is not enough in quantity to meet the raw water needs for Bekasi City. Water balance showed that in 2024 there will be a lack of water for the scenarios Q50, Q80, and especially in Q90. In order to meet the water need in Bekasi City, water reservoir engineering is needed with a storage volume of 176 million m3. Bekasi River water does not meet class 1 quality standards in terms of quality, so efforts are needed to control water pollution in the Bekasi River.


2018 ◽  
Vol 175 ◽  
pp. 04020
Author(s):  
Dongfang Yang ◽  
Dong Lin ◽  
Xiaolong Zhang ◽  
Qi Wang ◽  
Haixia Li

Many marine bays bave been polluted by Plumbum (Pb) due to the rapid development of industry and the swift increasing of economic, and therefore understanding the source and fate of Pb is essential to environmental remediation in marine bays. This paper analyzed the source and fate of Pb in Jiaozhou Bay, Shandong Province, eastern China in 1989. Results showed that Pb contents in surface waters in April, July and October 1989 were 5.56-12.59 μg L-1, 1.73-15.17 μg L-1 and 0.50-11.57 μg L-1, and the pollution levels were heavy, moderate and slight/moderate, respectively. The major sources of Pb in this bay were atmosphere deposition, overland runoff and river discharge, and their source strengths were 15.17 μg L-1, 12.59 μg L-1 and 11.57-12.06 μg L-1, respectively. The three source input processes were defined that the longer migration processes, the larger loss of substance’s contents. Furthermore, fate of Pb from source to sink was also defined. These migration processes were demonstrated by two block diagrams, which were helpful to better understand the source and fate of Pb in marine bay.


Sign in / Sign up

Export Citation Format

Share Document