scholarly journals Galeopsis speciosa (Lamiaceae): an Open Vegetation seed bank community at Worsley in Salford (v.c.59), revealed during construction of the new Royal Horticultural Society Garden at Bridgewater

2020 ◽  
Vol 2 (4) ◽  
pp. 377-406
Author(s):  
Michael J. Crawley

This paper provides a baseline flora for the site of the new garden of the Royal Horticultural Society at Worsley New Hall in Salford (v.c.59). During construction, 35,000 m3 of top-soil, sub-soil and spoil were stripped and stored onsite; species recruiting from these seed banks were monitored 2017-2020, leading to the description of a new Galeopsis speciosa Open Vegetation plant community. Four commercial wildflower mixes were used during post-construction landscaping in 2019, and their establishment was assessed in 2020. It will be interesting to follow the survival of these introduced species, many of which are not native to the site.

1998 ◽  
Vol 76 (7) ◽  
pp. 1188-1197 ◽  
Author(s):  
Heli M. Jutila b. Erkkilä

Seed banks of two seashore meadows were studied on the west coast of Finland (latitude 61°30'-61°33'N, longitude 21°28'-21°41'E). Samples were taken in June to a depth of 10 cm in the geolittoral zone of the grazed and ungrazed transects. The grazed samples were halved lengthwise: one half was grown immediately, the other after cold treatment. One third of the all samples was treated as controls, one third was watered with brackish water, and one third was given a pesticide treatment. Altogether, 13 926 seedlings germinated and 25 species were identified (three annuals, two biennials, and the rest perennials). Most seedlings were perennial monocots, with Juncus gerardii Loisel. the most abundant species. The seed bank was significantly larger and richer in the ungrazed site than in the grazed site. Cold treatment reduced the number of germinating species and seedlings. In the grazed and non-cold-treated samples, the numbers of species and seedlings were highest in the pesticide treatment. In ungrazed samples there were no significant differences among treatments. After the cold treatment, the least number of species and seedlings was produced by the salt-water treatment. Changing brackish water to tap water led to a burst of germination, especially of J. gerardii. The seed bank of the upper geolittoral zone was richer than that of the middle geolittoral. The multivariate classification and ordination groupings are based on the abundances of J. gerardii and Glaux maritima L.; different treatments were not distinguishable. There was a low resemblance between the seed bank and the aboveground vegetation.Key words: seed bank, salinity, pesticide, seashore meadow, cold treatment, vegetation.


1996 ◽  
Vol 36 (3) ◽  
pp. 299 ◽  
Author(s):  
TS Andrews ◽  
RDB Whalley ◽  
CE Jones

Inputs and losses from Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] soil seed banks were quantified on the North Coast of New South Wales. Monthly potential seed production and actual seed fall was estimated at Valla during 1991-92. Total potential production was >668 000 seeds/m2 for the season, while seed fall was >146000 seeds/m2. Seed fall >10000 seeds/m2.month was recorded from January until May, with further seed falls recorded in June and July. The impact of seed production on seed banks was assessed by estimating seed banks in the seed production quadrats before and after seed fall. Seed banks in 4 of the 6 sites decreased in year 2, although seed numbers at 1 damp site increased markedly. Defoliation from mid-December until February, April or June prevented seed production, reducing seed banks by 34% over 7 months. Seed banks in undefoliated plots increased by 3300 seeds/m2, although seed fall was estimated at >114 000 seeds/m2. Emergence of GPG seedlings from artificially established and naturally occurring, persistent seed banks was recorded for 3 years from bare and vegetated treatment plots. Sown seeds showed high levels of innate dormancy and only 4% of seeds emerged when sown immediately after collection. Longer storage of seeds after collection resulted in more seedlings emerging. Estimates of persistent seed banks ranged from 1650 to about 21260 seeds/m2. Most seedlings emerged in spring or autumn and this was correlated with rainfall but not with ambient temperatures. Rates of seed bank decline in both bare and vegetated treatment plots was estimated by fitting exponential decay curves to seed bank estimates. Assuming no further seed inputs, it was estimated that it would take about 3 and 5 years, respectively, for seed banks to decline to 150 seeds/m2 in bare and vegetated treatments.


2021 ◽  
Author(s):  
William R. Shoemaker ◽  
Evgeniya Polezhaeva ◽  
Kenzie B. Givens ◽  
Jay T. Lennon

Fluctuations in the availability of resources constrains the growth and reproduction of individuals, which in turn effects the evolution of their respective populations. Many organisms are able to respond to fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e., a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. We find that the ability to enter a dormant state increases the accumulation of genetic diversity over time and alters the trajectory of mutations, findings that are recapitulated using simulations based on a simple mathematical model. While the ability to form a seed bank does not alter the degree of negative selection, we find that it consistently alters the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank affects the direction and rate of molecular evolution over an extended evolutionary timescale.


2011 ◽  
Vol 79 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Maciej Wódkiewicz ◽  
Anna Justyna Kwiatkowska-Falińska

Forest seed banks mostly studied in managed forests proved to be small, species poor and not reflecting aboveground species composition. Yet studies conducted in undisturbed communities indicate a different seed bank characteristic. Therefore we aimed at describing soil seed bank in an undisturbed forest in a remnant of European lowland temperate forests, the Białowieża Forest. We compared similarity between the herb layer and seed bank, similarity of seed bank between different patches, and dominance structure of species in the herb layer and in the seed bank of two related oak-hornbeam communities. We report relatively high values of Sorensen species similarity index between herb layer and seed bank of both patches. This suggests higher species similarity of the herb layer and soil seed bank in natural, unmanaged forests represented by both plots than in fragmented communities influenced by man. Although there was a set of core seed bank species present at both plots, yielding high Sorensen species similarity index values, considerable differences between plots in seed bank size and dominance structure of species were found, indicating spatial variability of studied seed bank generated by edaphic conditions. Dominance structure of species in the herb layer was not reflected in the underlying seed bank. This stresses, that natural forest regeneration cannot rely only on the seed bank, although some forest species are capable of forming soil seed banks. While forest seed banks may not reflect vegetation composition of past successional stages, they may inform on history and land use of a specific plot.


2010 ◽  
Vol 14 ◽  
pp. 5-11
Author(s):  
W.M. Williams

The New Zealand flora is a mixture of indigenous and introduced species. The indigenous species have a high intrinsic value while the introduced species include all of the crop and pasture plants upon which the export-led economy depends. New Zealand must maintain both of these important sources of biodiversity in balance. Seed banks are useful tools for biodiversity management. In New Zealand, a seed bank for indigenous species has been a very recent initiative. By contrast, seed banks for introduced species have been established for over 70 years. The reasons for this discrepancy are discussed. For the economic species, conserved genetic diversity is used to enhance productivity and the environment. Large advances can be gained from species that are not used as economic plants. The gene-pool of white clover has been expanded by the use of minor species conserved as seeds in the Margot Forde Germplasm Centre. Keywords: Seed banks, biodiversity conservation, New Zealand flora


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7650 ◽  
Author(s):  
Xian Gu ◽  
Yu Cen ◽  
Liyue Guo ◽  
Caihong Li ◽  
Han Yuan ◽  
...  

The long-term use of herbicides to remove weeds in fallow croplands can impair soil biodiversity, affect the quality of agricultural products, and threaten human health. Consequently, the identification of methods that can effectively limit the weed seed bank and maintain fallow soil fertility without causing soil pollution for the next planting is a critical task. In this study, four weeding treatments were established based on different degrees of disturbance to the topsoil: natural fallow (N), physical clearance (C), deep tillage (D), and sprayed herbicide (H). The changes in the soil weed seed banks, soil nutrients, and soil microbial biomass were carefully investigated. During the fallow period, the C treatment decreased the annual and biennial weed seed bank by 34% against pretreatment, whereas the H treatment did not effectively reduce the weed seed bank. The D treatment had positive effects on the soil fertility, increasing the available nitrogen 108% over that found in the N soil. In addition, a pre-winter deep tillage interfered with the rhizome propagation of perennial weeds. The total biomass of soil bacterial, fungal, and actinomycete in H treatment was the lowest among the four treatments. The biomass of arbuscular mycorrhizal fungi in the N treatment was respectively 42%, 35%, and 91%, higher than that in the C, D, and H treatments. An ecological weeding strategy was proposed based on our findings, which called for exhausting seed banks, blocking seed transmission, and taking advantage of natural opportunities to prevent weed growth for fallow lands. This study could provide a theoretical basis for weed management in fallow fields and organic farming systems.


Author(s):  
Ya-Fei Shi ◽  
Zengru Wang ◽  
Bing-Xin Xu ◽  
Jian-Qiang Huo ◽  
Rui Hu ◽  
...  

Soil seed banks may offer great potential for restoring and maintaining desert ecosystems that have been degraded by climate change and anthropogenic disturbance. However, few studies have explored the annual dynamics in the composition and relative abundance of these soil seed banks. We conducted a long-term observational study to assess the effects of environmental factors (meteorology and microtopography) and aboveground vegetation on the soil seed bank of the Tengger Desert, China. The desert seed bank was dominated by annual herbs. We found that more rainfall in the growing season increased the number of seeds in the soil seed bank, and that quadrats at relatively higher elevations had fewer seeds. The species composition had more similarity in the seed bank than in the aboveground vegetation, though the seed bank and aboveground vegetation did change synchronously due to the rapid propagation of annuals. Together, our findings suggest that the combined effects of environmental factors and plant life forms determine the species composition and size of soil seed banks in deserts. Thus, if degraded desert ecosystems are left to regenerate naturally, the lack of shrub and perennial herb seeds could crucially limit their restoration. Human intervention and management may have to be applied to enhance the seed abundance of longer-lived lifeforms in degraded deserts.


2020 ◽  
Author(s):  
Nathan I. Wisnoski ◽  
Jay T. Lennon

ABSTRACTCoexisting species often exhibit negative frequency dependence due to mechanisms that promote population growth and persistence when rare. These stabilizing mechanisms maintain diversity through interspecific niche differences, but also through life-history strategies like dormancy that buffer dynamics in fluctuating environments. However, there are few tests demonstrating how seed banks contribute to long-term community dynamics and the maintenance of diversity. Using multi-year, high-frequency bacterial community data from a north temperate lake, we documented patterns consistent with stabilizing coexistence, including differential responses of bacterial taxa to environmental conditions and the presence of a seed bank. By maintaining rare taxa over winter periods, the seed bank contributed to recurrent seasonal dynamics. Last, strong negative frequency dependence in rare, but metabolically active, taxa suggested biotic interactions promoted coexistence. Together, our results provide field-based evidence that niche differences and seed banks stabilize bacterial community dynamics and contribute to the maintenance of microbial diversity in nature.


2017 ◽  
Vol 57 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Petra S. Yehnjong ◽  
Michael S. Zavada ◽  
Chris Liu

AbstractSoil seed banks are important to the maintenance and restoration of floras. Extant seed banks exhibit unique characteristics with regard to the distribution of seed size and seed density. Seeds were recovered from the Upper Pennsylvanian Wise Formation in southwest Virginia. Structurally preserved seeds were also examined from coal balls of the Pennsylvanian Pottsville and Allegheny Groups, Ohio. The size distribution of the seeds from the Wise Formation is similar to that of structurally preserved seeds of the Upper Pennsylvanian Pottsville and Allegheny Group coal balls. In contrast, the seed size distributions in extant wetland, grassland, woodland and forest habitats are significantly narrower than that of seeds from the Pennsylvanian seed banks. Larger seeds are less dependent on light for germination, and aid in seedling establishment more than smaller seeds, especially in dense stable forests where disturbance events are rare. Large seed size may contribute to increased seed longevity, which reduces the effect of environmental variability on seed germination and development. The significantly larger size of the Palaeozoic seeds may have imparted an advantage for seedling establishment in the dense Palaeozoic forests. The preponderance of large seeds may be a result of the absence of large seed predators (e.g. herbivorous tetrapods), and may have been an evolutionary strategy to minimize damage to the embryo from a predator population dominated by small invertebrates with chewing or sucking mouthparts. The estimated seed density of 192 seeds/m2in the Palaeozoic seed bank falls within the range of modern seed banks, but at the lower end of modern seed bank densities in a variety of habitats.


2017 ◽  
Vol 37 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Breanna Kobiela ◽  
Jonathon Quast ◽  
Cami Dixon ◽  
Edward S. DeKeyser

Sign in / Sign up

Export Citation Format

Share Document