scholarly journals Módulo didáctico para controlar nivel y caudal de agua, mediante sistema SCADA, PLC y algoritmo PID

Author(s):  
Andrade Cedeño Rogger

  In this project, design and construction of an educational module has been carry out, allowing understand in a practical way, the concepts related to: control system, instrumentation, actuator, programmable logic controller, SCADA system and control algorithm. Module’s principal components are main tank, reserve tank, piping system, fittings, differential pressure transducer, turbine flowmeter, rotameter, control valve, solenoid valves, servovalve, centrifugal pump, PLC and a personal computer (PC). With this, automatic flow and water level control were achieve, through the implementation of a PID control algorithm. In the end, operation tests have been perform, generating changes in set point, and generating disturbances, to observe the response of the process and assess the control system.   Keywords — control system, instrumentation, flow control, level control, PLC, SCADA, PID controller

2012 ◽  
Vol 468-471 ◽  
pp. 1486-1489
Author(s):  
Peng Wang ◽  
Jian Yan ◽  
Ting Chen ◽  
Ming Li

This paper presents a new distributed control system used in torque rheometer. It can overcome shortcomings in traditional control system of torque rheometer and optimize overall performance of the system. The measurement and control system was designed by modeling method. The enhanced PID control algorithm and integration separation digital PID control algorithm were adopted to improve dynamic response characteristics. The Modbus communication protocol was selected as data link layer protocol of communications network. The monitoring software was developed by Visual Basic. A large number of experiments demonstrate that the stability of system is improved greatly and maintenance and extension of instrument become easier.


2014 ◽  
Vol 684 ◽  
pp. 381-385
Author(s):  
Jia Liu

In this paper, control system of rotary inverted pendulum based on ARM is designed, which is composed by mechanical section and control section. The system measures signal for variation of angle of radial arm and pendulum rod and transmits such signal to ARM control panel, after which control rate can be calculated through PID control algorithm. Inversion of pendulum rod can be controlled through rotation of the radial arm on a plane driven by an electric motor, and the pendulum rod can rotate on a vertical plane. Finally, MATLAB is used to conduct simulation for three parameters including proportionality coefficient (KP), integral coefficient (KI) and differential coefficient (KD), based on which ideal parameters are determined, stable control of pendulum rod inversion near equilibrium point is realized, and feasibility of control algorithm is verified.


2017 ◽  
Vol 865 ◽  
pp. 480-485
Author(s):  
Jian Liang Li ◽  
Xiao Xi Liu ◽  
Shu Qing Li ◽  
Zhi Fei Tao ◽  
Lei Ma

The research mainly focuses on the performance of the controllable hypocenter in the low frequency band. The hybrid vibration isolation method based on the disturbance observer PID control algorithm is used to improve the excitation signal quality. Based on the analysis of the structure and working principle of vibration isolator, the physical model and mathematical model are established, and the simulation test of ZK-5VIC virtual test vibration and control system is carried out. The experimental platform of hybrid vibration isolation system with low frequency interference is set up. The experiment of excitation and acquisition of low frequency signal is carried out, which provides the theoretical basis and guarantee for the vibration isolation technology in the low frequency range below 3Hz.


Robotica ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 165-180
Author(s):  
Zhang Zhonglin ◽  
Fu Bin ◽  
Li Liquan ◽  
Yang Encheng

SUMMARYThe particularity of nuclear power plant environment requires that the nuclear power inspection robot must be remote control operation. The main purpose of the inspection robot is to carry out inspection, prevention, reporting, and safety emergency operation on the instruments, so as to provide guarantee for the safe operation of the nuclear power plant. Based on the representative configuration of nuclear power robot at home and abroad, this paper develops a small and lightweight nuclear power plant inspection robot, including walking mechanism, lifting mechanism, operating mechanism, image acquisition, information communication and control system, etc., to carry on the statics analysis to the key components of the inspection robot and verify that the stiffness and strength of the mechanical structure meet the requirements of lightweight design. Modal analysis is carried out to verify that the motor does not cause resonance when working. The kinematic model of the robot has been established and can provide the theoretical basis for the controller design. A hierarchical control system based on LabVIEW upper computer monitoring and control operation interface is established, which uses adaptive fuzzy Proportional Integral Derivative (PID) control to simulate the walking control, and then realizes the control of walking mechanism through software programming, and the adaptive fuzzy PID control has better effect than the conventional PID control. The S-type acceleration and deceleration algorithm is used to realize the accurate control of the position location of the lifting mechanism. Finally, combined with the experiment of 5MS robot comprehensive experimental platform, it is proved that the inspection robot can realize remote control function operation.


2014 ◽  
Vol 525 ◽  
pp. 583-587
Author(s):  
Bing Tu ◽  
Wei Zhang ◽  
Teng Xi Zhan

This paper presented a excitation liquid-cooled retarder control system based on a microprocessor MC9SXS128. In order to achieve the constant speed, It used PWM to adjust the output current of excitation liquid-cooled retarder. It analyzed and calculated the inductance value in PWM output circuit and also analyzed the excitation liquid-cooled retarder control systematical mathematical model . It divided the brake stalls based on the current flowing through the field coil. by adding the PID closed-loop control system, the retarder could quickly reach the set speed. It tested the PID control algorithm at the experiments in retarder drum test rig and the results show that the control algorithm has good control performance to meet the application requirements.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 770
Author(s):  
Fan Yu ◽  
Quan Wen ◽  
Hongjie Lei ◽  
Liangkun Huang ◽  
Zhiyu Wen

This paper presents a compound control system for precise control of the flame-retardant 4 (FR4)-based electromagnetic scanning micrograting. It mainly consists of a frequency controller and an angle controller. A dual closed-loop structure consisting of a current loop and an angle loop was designed in the angle controller. In addition, the incremental proportional–integral–derivative (PID) control algorithm was designed in the current loop, and the fuzzy-PID control algorithm was employed in the angle loop. From the experimental results, the frequency controller can effectively track the real-time resonant frequency of the scanning micrograting with a tracking accuracy of 0.1 Hz. The overshoot of the scanning micrograting is eliminated. Compared to an open-loop control system, the control system presented in this work reduces the steady-state error of the scanning micrograting from 1.122% to 0.243%. The control accuracy of the compound control system is 0.02°. The anti-interference recovery time of the scanning micrograting was reduced from 550 ms to 181 ms, and the long-term stability was increased from 2.94% to 0.12%. In the compound control system presented in this paper, the crucial parameters of the FR4-based electromagnetic scanning micrograting, including motion accuracy, anti-interference ability, and long-term stability, were effectively improved.


Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 97
Author(s):  
Song Zheng ◽  
Chao Bi ◽  
Yilin Song

This paper presents a novel diagonal recurrent neural network hybrid controller based on the shared memory of real-time database structure. The controller uses Data Engine (DE) technology, through the establishment of a unified and standardized software architecture and real-time database in different control stations, effectively solves many problems caused by technical standard, communication protocol, and programming language in actual industrial application: the advanced control algorithm and control system co-debugging difficulties, algorithm implementation and update inefficiency, and high development and operation and maintenance costs effectively fill the current technical gap. More importantly, the control algorithm development uses a unified visual graphics configuration programming environment, effectively solving the problem of integrated control of heterogeneous devices; and has the advantages of intuitive configuration and transparent data processing process, reducing the difficulty of the advanced control algorithms debugging in engineering applications. In this paper, the application of a neural network hybrid controller based on DE in motor speed measurement and control system shows that the system has excellent control characteristics and anti-disturbance ability, and provides an integrated method for neural network control algorithm in a practical industrial control system, which is the major contribution of this article.


2012 ◽  
Vol 482-484 ◽  
pp. 2600-2604
Author(s):  
Fan Zeng ◽  
Jing Jun Lou ◽  
Shi Jian Zhu

Semiconductor refrigeration plate, temperature sensor, microcontroller STC12C5410AD and other circuits are used to design a new kind of temperature control system of the giant magnetostrictive actuator. Semiconductor refrigeration plate is controlled by the PID control algorithm for temperature controlling automatically.


Sign in / Sign up

Export Citation Format

Share Document