Relation between soundscape and spatial configuration in different urban contexts

2021 ◽  
Vol 263 (5) ◽  
pp. 1405-1414
Author(s):  
Benameur Okba ◽  
Valerio Cutini ◽  
Francesco Leccese ◽  
Giacomo Salvadori ◽  
Noureddine Zemmouri

During the last decade, the problem of noise pollution has continued to increase in Europe as well as in under-developed countries. This issue is stressed in city centers, owing to the abundance of residential activities, vehicle traffic and multiple services. This study investigates the relationship between urban spatial configuration and environment soundscape in two different areas: Pisa historic center, Italy and Biskra downtown, Algeria, using the potential of Space Syntax theory in predicting noise levels distribution. For this analysis, thirty stations of measurements were held in each area during day time using a Sound Level Meter. A Noise map was modeled using the interpolation tool provided by a Geographic Information System program, while the collected data were correlated with the Angular Segment Analysis variables. The findings reveal a close relationship between the sound levels obtained and Space Syntax theory global and local indexes such as Normalized Choice and Integration, which signifies the ability of the approach in describing the sound phenomenon in different urban contexts.

2021 ◽  
Vol 36 (1) ◽  
pp. 500-506
Author(s):  
Dharmaraj Sundaram ◽  
Ili Najaa Aimi Mohd Nordin ◽  
Nurulaqilla Khamis ◽  
Noraishikin Zulkarnain ◽  
Muhammad Rusydi Muhammad Razif ◽  
...  

Modernization has brought the world technological advancements, but it has also brought with it a slew of problems. In today's Malaysia, air and noise pollution are becoming more of a concern, along with a rise in occupational disease. A monitoring system is needed to address these issues. This paper describes the development of a real-time IoT-based air and noise pollution monitoring system that can provide monitoring and alert the user to the pollution levels. This monitoring system was built using IoT technology, which included the use of an ESP8266 Wi-Fi Module NodeMCU as a microcontroller to communicate with the chosen IoT analytics platform, ThingSpeak. A gas sensor MQ9 was used to measure carbon monoxide concentrations, and a sound sensor LM393 was used to measure noise levels in the surrounding area. The measured values were displayed on the Arduino software's serial monitor, then sent to the ThingSpeak server and graphically displayed in real time on a screen. The results of the electronic sensors were compared to the results of the stand-alone carbon monoxide meter and digital sound level meter for validation. The proposed monitoring system produced promising results, with 91.12 % and 97.86 % accuracy for gas and sound levels shown by the gas sensor MQ9 and sound sensor LM393, respectively. The framework also provides ThingSpeak server warning messages. When the calculated conditions exceeded the user's defined cap, the server sent the user an email update with the gas and noise limit status. This has made the system more useful and convenient.


Author(s):  
Petru A. Pop ◽  
Patricia A. Ungur ◽  
Liviu Lazar ◽  
Mircea Gordan ◽  
Florin M. Marcu

One wildly used method to reduce and control the noise pollution in green city’s buildings is using sonic-absorbent panels. Their applications can be multiple, such as the insulation of buildings, acoustic barriers and fences along the highway or in front of supermarkets, hospitals and other public buildings. This paper presents a method for testing the behavior of sonic-absorbent panels in open-air environment. The work represents a carrying on of previous research about absorbent materials from gypsum family, tested in lab conditions. The experiment setup used a dynamic installation and as a sample a stand formed by six sonic-absorbent panels from special modeling alpha-gypsum plaster. This installation has been composed of two loudspeakers for emitting the sound at a well-defined frequency by the first laptop, the microphone for detecting and transmitting the signal to the second laptop for analyzing and processing the data. All operations were performed using MATLAB Programs, while a Data Logger Sound Level Meter type CENTER 332 was put on near the microphone to compare both results. The first experiment of acoustic stand has been realized by setting up the installation at a frequency from 50 Hz to 1250 Hz and altering the distance between loudspeakers and stand at 0.5m to 1m and 1.5m, respectively. The second experiment kept the same test’s conditions, while two and three layers of sonic-absorbent panels formed the stand, respectively, but at same distance from source of 0.5 m. In both tests, the results underlined the good sonic-absorbent properties of these panels, especially at medium and high frequency, which can recommend using the panels for multiple outside applications.


2017 ◽  
Vol 11 (6) ◽  
pp. 47
Author(s):  
Shabani Sh. ◽  
Zarei Sh.

Detection, measurement and monitoring of environmental pollution are considered as one of the decision basics in the environmental management. Principle planning for solving environmental problems is not possible without reliance to assured measurement with the help of new and powerful systems in monitoring. In this regard the noise pollution of airports is of great importance. In this paper by using device analysis method and utilizing a calibrated sound level meter device, sources of noise pollution recognition, noise and sound pressure level measurement, evaluation and comparison of them with environmental standards, and airside control actions of the Imam Khomeini international airport have been performed and it was showed, that the runway, ground safety and the dock have been respectively the main pollutants, so that noise pollution in the Apron area and runway at night have been 80.7% more than Iran standards and the ground safety site while alarm broadcasting has been 53.1% at daytime and 61.1% at night more than standards and these values for Dock has been 20.88% and also the value of noise pollutants in water refinery sites, watchtower, taxi parking and pilgrim terminals have met standards. Finally some solutions against noise pollution have been proposed.


2021 ◽  
Vol 12 (1) ◽  
pp. 51-62
Author(s):  
Nicholas OBI ◽  
◽  
Joy Sylvia OBI ◽  
Eziyi IBEM ◽  
Dickson NWALUSI ◽  
...  

Noise pollution and its concomitant effects on humans and environment has reached dangerous levels in many urban areas across the world. However, very little is known about the sources and effects of noise pollution within students’ hostels in a developing country like Nigeria. This study investigated urban noise pollution in residential neighbourhoods, using the Nnamdi Azikiwe University students’ off-campus accommodation in Awka, southeast Nigeria as the study area. Data were obtained through measurements of noise levels using sound level meter and by conducting a survey to gather feedback from 260 students in the study area. Descriptive statistics and Chi-Square tests were used to analyse the data; the results revealed mean noise levels of 89.8 dB(A) and 46.9 dB(A) during noisy and quiet periods, respectively. The main sources of noise were portable electricity generators, vehicular traffic and loudspeakers used by students and business operators; they were found to have deleterious effects such as low tolerance, headache, anger, lack of concentration and low productivity on the students. The study concludes by noting that to effectively minimize the effects of noise pollution within urban residential neighbourhoods in the study area and beyond, architects and urban planners should engage in proper land use zoning and the application of sound absorbing materials on walls and locating balconies of residential buildings away from noise sources. In addition, vegetation belts and sound barriers of earth mounds or wood, metal or concrete could also be constructed between the sources of noise and residential buildings, especially in the case of roadside communities.


ASTONJADRO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195
Author(s):  
Syaiful Syaiful ◽  
Almas Fathin Irbah

<p>Bogor Regency has an economic growth rate including the highest among cities and other districts around the Jakarta Capital Region. Regarding the condition of the vehicle population in Bogor district, the number of motorized vehicles in 2017 and 2018 experienced a growth of between 2% and 12%. In contrast to the growth rate of vehicles, the road growth rate is only 0.1% per year. Nurul Hidayah Mosque is located on Jalan Salabenda, the object of the author's research to find out how much influence the sound of motorized vehicles has on worship activities around the Nurul Hidayah mosque. In public transport car speed, motorcycle speed, and private car speed do not have a significant effect on the noise pollution produced. The noise level around the Nurul Hidayah Mosque, Jalan Salabenda Raya, Bogor Regency which has been measured the smallest is 56.4 dBA. This value exceeds the noise threshold of the Noise Level Standard Value for the Ministerial Decree, which is 55 dBA. So that it requires attention and cooperation from the government and the community to overcome the noise in the worship area. The calculation and analysis obtained is on the equation with the largest R Square value on the fourth day of the study, the third point (Sound Level Meter 3), with a contribution of 22.67%. Like the equation on the side, y = 73.251 + 0.004x<sub>1</sub>-0.311x<sub>2</sub>-0.003x<sub>3</sub>. The meaning of this equation is that if there is no decrease in the speed of motorbikes, private cars and public transport cars, the noise pollution level in SLM3 is 73,251 dBA. If there is an increase in the speed of public transport cars by 0.004, the decrease of motorbikes by 0.311, and an increase in the speed of private cars by 0.003, the noise pollution level will decrease by 0.31 dBA at SLM3.</p>


2019 ◽  
Vol 9 (24) ◽  
pp. 5566 ◽  
Author(s):  
Juliana Araújo Alves ◽  
Lígia Torres Silva ◽  
Paula Remoaldo

Noise pollution is the second most harmful environmental stressor in Europe. Portugal is the fourth European country most affected by noise pollution, whereby 23.0% of the population is affected. This article aims to analyze the effects of exposure to low frequency noise pollution, emitted by power poles and power lines, on the population’s well-being, based on a study of “exposed” and “unexposed” individuals in two predominantly urban areas in north-western Portugal. To develop the research, we used sound level (n = 62) and sound recording measurements, as well as adapted audiometric test performance (n = 14) and surveys conducted with the resident population (n = 200). The sound levels were measured (frequency range between 10 to 160 Hz) and compared with a criterion curve developed by the Department for Environment, Food and Rural Affairs (DEFRA). The sound recorded was performed 5 m away from the source (400 kV power pole). Surveys were carried out with the “exposed” and “unexposed” populations, and adapted audiometric tests were performed to complement the analysis and to determine the threshold of audibility of “exposed” and “unexposed” volunteers. The “exposed” area has higher sound levels and, consequently, more problems with well-being and health than the “unexposed” population. The audiometric tests also revealed that the “exposed” population appears to be less sensitive to low frequencies than the “unexposed” population.


2002 ◽  
Vol 116 (9) ◽  
pp. 695-698 ◽  
Author(s):  
Alasdair Robertson ◽  
Brian Bingham ◽  
George McIlwraith

A patient presented to the authors with unilateral sensorineural hearing loss after falling asleep with his ear tightly pressed against a window of a moving train. This study set out to determine whether a train could generate sound levels of sufficient intensity to cause such a hearing loss. A sound level meter was used to measure the sound levels produced at the window of a moving train. Further measurements were made with a rubber attachment on the microphone, that simulated the effect of the ear stuck to the window. The sound levels were found to be amplified by the attachment but not to levels that could cause a hearing loss over a short period. In a second experiment eight healthy volunteers all perceived an increase in sound levels when their ears were pressed against a train window.It seems unlikely that sleeping with an ear against a train window can cause hearing loss, but it cannot be ruled out.


2008 ◽  
Vol 122 (12) ◽  
pp. 1305-1308 ◽  
Author(s):  
M H Fritsch

AbstractPurpose:To determine the decibel sound pressure levels generated during extracorporeal lithotripsy for salivary stones, and if such lithotriptor noise levels have the potential for acoustic trauma.Patients and materials:Minilith SL-1 salivary gland lithotriptor, sound level meter; five patient survey.Methods:Decibel measurements were conducted on the lithotripter-generated sounds, using a sound level meter at specific distances from the active element. In addition, a patient survey was conducted as a cross-reference, to enable comparison of predicted results with actual human perception of sound levels.Results:Sound levels ranged between 68 and 80 dB during treatment sessions, for both the lithotriptor operator and the patient.Conclusion:During routine use, no acoustic trauma is incurred by either the lithotriptor operator or the patient.


Author(s):  
Yula C. Serpanos ◽  
Janet R. Schoepflin ◽  
Steven R. Cox ◽  
Diane Davis

Abstract Background The accuracy of smartphone sound level meter applications (SLMAs) has been investigated with varied results, based on differences in platform, device, app, available features, test stimuli, and methodology. Purpose This article determines the accuracy of smartphone SLMAs with and without calibration of external and internal microphones for measuring sound levels in clinical rooms. Research Design Quasi-experimental research design comparing the accuracy of two smartphone SLMAs with and without calibration of external and internal microphones. Data Collection and Analysis Two iOS-based smartphone SLMAs (NIOSH SLM and SPL Meter) on an iPhone 6S were used with and without calibrated external and internal microphones. Measures included: (1) white noise (WN) stimuli from 20 to 100 dB sound pressure level in a sound-treated test booth and (2) sound levels in quiet in four nonsound-treated clinical rooms and in simulated background sound conditions using music at 45, 55, and 80 dBA. Chi-square analysis was used to determine a significant difference (p ≤ 0.05) in sound measures between the SLMAs and a Type 1 SLM. Results Measures of WN signals and room sound level measures in quiet and simulated background sound conditions were significantly more accurate at levels ≥ 40 dBA using the SLMAs with calibrated external and internal microphones. However, SLMA measures with and without calibration of external and internal microphones overestimated sound levels < 40 dBA. Conclusion The SLMAs studied with calibrated external or internal microphones are able to verify the room environment for audiologic screening at 1,000, 2,000, and 4,000 Hz at 20 dB hearing level (American Academy of Audiology and American Speech-Language-Hearing Association) using supra-aural earphones (American National Standards Institute S3.1–1999 [R2018]). However, the tested SLMAs overestimated low-level sound < 40 dBA, even when the external or internal microphones were calibrated. Clinicians are advised to calibrate the microphones prior to using measurement systems involving smartphones and SLMAs to measure room sound levels and to monitor background noise levels throughout the provision of clinical services.


2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
Ana Ferreira ◽  
Silvia Seco ◽  
João Paulo Figueiredo ◽  
António Loureiro ◽  
António Gomes

Abstract Background Currently, we can find a more industrialized and developed society that has contributed to the large-scale expansion of sound levels. Noise is already identified as one of the main risk factors for the health of workers, due to the high frequency of workers daily exposed and risky professional activities. In this sense, it is necessary to carry out assessments of occupational noise in order to understand whether or not workers' exposure is within the limit values and what preventive measures to adopt. Methods The present study had as main objective to evaluate the occupational exposure to noise of the workers of a carpentry, located in a municipality in the Center of Portugal, and to understand its influence on their health. Measurements were performed using two devices, a Cesva dosimeter, model DC 112 and a Cesva model SC420 sound level meter. Results The results obtained demonstrated the existence of noise in some of the evaluated workstations and also the existence of some workers exposed to high levels of noise. It was also possible to observe that although all workers have hearing protection, it is not always effective. Conclusions We conclude that carpentry is a noise-producing work environment, and with the help of appropriate collective and/or individual protective equipment, it is possible to mitigate this exposure to noise, either by workers or by machines/equipment, ensuring thus the safety and health of workers.


Sign in / Sign up

Export Citation Format

Share Document