scholarly journals GC-MS Profiling of Anti-bacterial Metabolic Compounds from the Extract of Azadirachta indica

2020 ◽  
pp. 17-23

Azadirachta indica is a very common plant used very frequently due to its medicinal significance. The antibacterial activities of 0.001, 0.01, 0.1, 1.0 and 10 mg/mL of the plant extract were determined against different pathogenic bacteria. Concentration of 0.01 mg/mL killed the E. coli, E. aerogenes, P. stuartii and 10, 1.0 and 0.1 mg/mL were very effective against the E. cloacae, K. pneumoniae and P. mirabilis and killed them 100% in culture plates. The plant extracts were analyzed for the characterization of the different antimicrobial compounds through gas chromatography-mass spectrometry (GC-MS). An array of antibacterial compounds such as azulene, tetrasiloxane, phthalic acid, cyclopentasiloxane, hexadecanoic acid, spiropentane, dioctyl phthalate were detected in the plant extract through GC-MS. The antibacterial activities of the plant extracts were might be because of their compound which had been reported previously as well as antimicrobial compounds.

2020 ◽  
pp. 31-38

The Corvus splendens (Indian house crow) normally fed on the garbage therefore, they have many pathogenic bacteria, which can infect the human and cause severe infection in human irrespective to the gender, age and region. The bacteria samples were isolated from the faeces, blood lever, and intestines of the crows in Luria-Bertani (LB) agar plates. The culture plates were incubated at 37°C until the colonies were appeared. The colonies were identified morphologically and through molecular marker using 16S-rDNA. The Commiphora myrrha plant extract was used to determine the antibacterial activities against the pathogenic bacteria isolated from crows. The plant was crushed with 70% methanol and filtered. The filtrates were dried and dissolved in 100% methanol. Antibacterial activities of plant extracts were determined against the pathogenic bacteria isolated from crows. The results showed that the plant extracts were very effective against the pathogenic bacteria and showed 100% antibacterial activities. The plants extracts were analyzed for the characterization of different antimicrobial compound through gas chromatography mass spectrometry (GC-MS). The undecane, tetrasiloxane, hexadecanoic acid, heptasiloxane, benzocyclohepten and many other compounds. The antibacterial activities of the plant extracts were might be because of their compound which had been reported previously as well as an antimicrobial compound.


2019 ◽  
Vol 9 (3) ◽  
pp. 393-397
Author(s):  
R. Sharma ◽  
J. Singh ◽  
A.K. Bhatia

Introduction: An alternative source of synythesis of nanoparticles is plant extract rather than chemical methods. This is because of presence of secondary metabolites or reducing agents in plant extract which are responsible for nanoparticles synthesis. In bioaccumulation, this synthesis depends upon the availability of particular enzymes or protein in plant extract. Materials & Methods: Considering the therapeutic potentials of nanoparticles, this work has been designed to find out antibacterial activity of silver nanoparticles. Objectives of this work are - preparation of silver nanoparticles chemically and biologically, characterisation of nanoparticles and evaluation of their antibacterial activities against E. coli. Comparision of antibacterial properties were made among NaBH4- AgNPs, Azadirachta indica (Neem) extract AgNPs and Brassica oleracea (Cauliflower) extract AgNPs. UV- absorption spectra of chemically and biologically synthesized AgNPs at different time intervals were measured using UV-Visible spectrophotometer. Particle size of AgNPs was measured by dynamic laser scattering technique (DLS) using Malvern Aimil Zetasizer. Results: The obtained silver nanoparticles were of sizes between 10 nm and 100 nm. Conclusion: It was clear from antibacterial activities that biologically synthesized AgNPs were more effective against E. coli than chemically synthesized AgNPs.


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


2020 ◽  
Vol 17 ◽  
Author(s):  
Balogun Olaoye Solomon ◽  
Ajayi Olukayode Solomon ◽  
Owolabi Temitayo Abidemi ◽  
Oladimeji Abdulkarbir Oladele ◽  
Liu Zhiqiang

: Cissus aralioides is a medicinal plant used in sub-Saharan Africa for treatment of infectious diseases; however the chemical constituents of the plant have not been investigated. Thus, in this study, attempt was made at identifying predominant phytochemical constituents of the plant through chromatographic purification and silylation of the plant extract, and subsequent characterization using spectroscopic and GC-MS techniques. The minimum inhibitory concentration (MICs) for the antibacterial activities of the plant extract, chromatographic fractions and isolated compounds were also examined. Chromatographic purification of the ethyl acetate fraction from the whole plant afforded three compounds: β-sitosterol (1), stigmasterol (2) and friedelin (3). The phytosterols (1 and 2) were obtained together as a mixture. The GC-MS analysis of silylated extract indicated alcohols, fatty acids and sugars as predominant classes, with composition of 24.62, 36.90 and 26.52% respectively. Results of MICs indicated that friedelin and other chromatographic fractions had values (0.0626-1.0 mg/mL) comparable with the standard antibiotics used. Characterization of natural products from C. aralioides is being reported for the first time in this study.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


Author(s):  
Ulrike Friedlein ◽  
Samart Dorn-In ◽  
Karin Schwaiger

The application of plant extracts (PEs) could be a promising option to satisfy consumers’ demand for natural additives to inhibit growth of variable pathogenic bacteria. Thus, the aim of this study was to develop a standardized microdilution method to examine the antimicrobial effects of ten hydrophilic plant extracts against two strains of C. perfringens facing various food-relevant influencing factors. Due to the high opacity of PEs, resazurin was used as an indicator for bacterial growth instead of pellet formation. The highest value of the minimum inhibitory concentration (MIC) of the replications of each PE was defined as effective plant extract concentration (EPC), whereas the next concentration beneath the lowest MIC value was defined as the ineffective plant extract concentration (IEPC). The EPC of seven PEs: allspice, cardamom, cinnamon, clove, coriander, ginger and mace were between 0.625 - 10 g/kg, whereas extracts of caravey, nutmeg and thyme showed no antimicrobial activity up to the maximum concentration tested (10 g/kg) against C. perfringens in vitro. Two intrinsic factors, sodium chloride and sodium nitrite, displayed either synergistic/additive effects or no interaction with most PEs. By combination with PEs at its ineffective plant concentration (IEPC, 0.08 – 1.25 g/kg), MIC of NaCl and NaNO2 decreased from 25 – 50 g/kg to 6 – 25 g/kg and > 200 mg/kg to 0.2 – 100 mg/kg respectively. On the contrary, lipid (sun flower oil) at a low concentration inhibited the antimicrobial effects of all tested PEs. For extrinsic factors, only allspice, ginger and coriander could maintain their antimicrobial effects after being heated to 78 °C for 30 min. The synergistic effect between PEs and pH values (5.0 and 5.5) was also found for all PEs. The established screening method with resazurin and defining EPC and IEPC values allows the verification of antimicrobial effects of PEs under various food-relevant influencing factors in a fast and reproducible way.


2020 ◽  
Vol 14 (6) ◽  
pp. 147-155
Author(s):  
J. N. Agbom ◽  
O. Ogbu ◽  
I. R. Iroha ◽  
I. B. Moses ◽  
A. L. Onuora ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 211 ◽  
Author(s):  
Waner Zhan ◽  
Jianyun Yao ◽  
Kaihao Tang ◽  
Yangmei Li ◽  
Yunxue Guo ◽  
...  

Toxin-antitoxin (TA) systems are ubiquitous and abundant genetic elements in bacteria and archaea. Most previous TA studies have focused on commensal and pathogenic bacteria, but have rarely focused on marine bacteria, especially those isolated from the deep sea. Here, we identified and characterized three putative TA pairs in the deep-sea-derived Streptomyces sp. strain SCSIO 02999. Our results showed that Orf5461/Orf5462 and Orf2769/Orf2770 are bona fide TA pairs. We provide several lines of evidence to demonstrate that Orf5461 and Orf5462 constitute a type-II TA pair that are homologous to the YoeB/YefM TA pair from Escherichia coli. Although YoeB from SCSIO 02999 was toxic to an E. coli host, the homologous YefM antitoxin from SCSIO 02999 did not neutralize the toxic effect of YoeB from E. coli. For the Orf2769/Orf2770 TA pair, Orf2769 overexpression caused significant cell elongation and could lead to cell death in E. coli, and the neighboring Orf2770 could neutralize the toxic effect of Orf2769. However, no homologous toxin or antitoxin was found for this pair, and no direct interaction was found between Orf2769 and Orf2770. These results suggest that Orf2769 and Orf2770 may constitute a novel TA pair. Thus, deep-sea bacteria harbor typical and novel TA pairs. The biochemical and physiological functions of different TAs in deep-sea bacteria warrant further investigation.


2019 ◽  
Author(s):  
Steven J. Hersch ◽  
Bojana Radan ◽  
Bushra Ilyas ◽  
Patrick Lavoie ◽  
William Wiley Navarre

AbstractBacteria have evolved to sense and respond to their environment by altering gene expression and metabolism to promote growth and survival. In this work we demonstrate that Salmonella displays an extensive (>30 hour) lag in growth when subcultured into media where dicarboxylates such as succinate are the sole carbon source. This growth lag is regulated in part by RpoS, the RssB anti-adaptor IraP, translation elongation factor P, and to a lesser degree the stringent response. We also show that small amounts of proline or citrate can trigger early growth in succinate media and that, at least for proline, this effect requires the multifunctional enzyme/regulator PutA. We demonstrate that activation of RpoS results in the repression of dctA, encoding the primary dicarboxylate importer, and that constitutive expression of dctA induced growth. This dicarboxylate growth lag phenotype is far more severe across multiple Salmonella isolates than in its close relative E. coli. Replacing 200 nt of the Salmonella dctA promoter region with that of E. coli was sufficient to eliminate the observed lag in growth. We hypothesize that this cis-regulatory divergence might be an adaptation to Salmonella’s virulent lifestyle where levels of phagocyte-produced succinate increase in response to bacterial LPS. We found that impairing dctA repression had no effect on Salmonella’s survival in acidified succinate or in macrophage but propose alternate hypotheses of fitness advantages acquired by repressing dicarboxylate uptake.ImportanceBacteria have evolved to sense and respond to their environment to maximize their chance of survival. By studying differences in the responses of pathogenic bacteria and closely related non-pathogens, we can gain insight into what environments they encounter inside of an infected host. Here we demonstrate that Salmonella diverges from its close relative E. coli in its response to dicarboxylates such as the metabolite succinate. We show that this is regulated by stress response proteins and ultimately can be attributed to Salmonella repressing its import of dicarboxylates. Understanding this phenomenon may reveal a novel aspect of the Salmonella virulence cycle, and our characterization of its regulation yields a number of mutant strains that can be used to further study it.


2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Siti Samiyarsih ◽  
NUR FITRIANTO ◽  
ELLY PROKLAMASININGSIH ◽  
JUWARNO ◽  
JUNI SAFITRI MULJOWATI

Abstract. Samiyarsih S, Fitrianto N, Proklamasiningsih E, Juwarno, Muljowati JS. 2020. Phytochemical diversity and antimicrobial properties of methanol extract of several cultivars of Catharanthus roseus using GC-MS. Biodiversitas 21: 1332-1344. Catharanthus roseus (L.) G is an important medicinal plant to evaluate the possibility of novel pharmaceuticals since most of the bacterial pathogens are developing resistance against antibiotics. This research aimed to determine the phytochemical diversity of methanol extract of eight cultivars of C. roseus and to evaluate for possible antimicrobial (antifungal and antibacterial) activities. It is the first research to compare phytochemicals and antimicrobial potential among C. roseus cultivars. The compound obtained was screened by Gas Chromatography-Mass Spectrometry (GC-MS) method. While agar-well disc diffusion method was employed to measure antimicrobial activity against Escherichia coli, Staphylococcus aureus, Aspergillus flavus and Aspergillus niger. Based on GC-MS analysis, a total of 18 significantly different metabolite compounds. The abundances of phytochemical compounds (18 classes total) in each cultivar were Dark Pink (66%), Pink (50%), Purple Pink (44%), Pale Pink (27%), White (44%), Milky White (50%), Whitish pink (50%) and Pinkish Red (55%). The leaves extracts showed antimicrobial activity with inhibition zones ranging from 6.40-22.00 mm and 3.35-8.20 mm, respectively. The best antimicrobial activity against E. coli, S. aureus, A. flavus, and A. niger with the zone of inhibition 16.10±1.67 mm, 22.00±0.33 mm, 6.05±0.67 mm and 8.20±0.50 mm respectively by Dark Pink cultivar.


Sign in / Sign up

Export Citation Format

Share Document