Faculty Opinions recommendation of Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation.

Author(s):  
Bruno Stieger
Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Fernanda Roca Rubio ◽  
Ulrika Eriksson ◽  
Robert J. Brummer ◽  
Julia König

AbstractThe intestinal barrier plays a crucial role in maintaining gut health, and an increased permeability has been linked to several intestinal and extra-intestinal disorders. There is an increasing demand for interventions aimed at strengthening this barrier and for in vivo challenge models to assess their efficiency. This study investigated the effect of sauna-induced dehydration on intestinal barrier function (clinicaltrials.gov: NCT03620825). Twenty healthy subjects underwent three conditions in random order: (1) Sauna dehydration (loss of 3% body weight), (2) non-steroidal anti-inflammatory drug (NSAID) intake, (3) negative control. Intestinal permeability was assessed by a multi-sugar urinary recovery test, while intestinal damage, bacterial translocation and cytokines were assessed by plasma markers. The sauna dehydration protocol resulted in an increase in gastroduodenal and small intestinal permeability. Presumably, this increase occurred without substantial damage to the enterocytes as plasma intestinal fatty acid-binding protein (I-FABP) and liver fatty acid-binding protein (L-FABP) were not affected. In addition, we observed significant increases in levels of lipopolysaccharide-binding protein (LBP), IL-6 and IL-8, while sCD14, IL-10, IFN-ɣ and TNF-α were not affected. These results suggest that sauna dehydration increased intestinal permeability and could be applied as a new physiological in vivo challenge model for intestinal barrier function.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Shara Francesca Rapa ◽  
Rosanna Di Paola ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
...  

Intestinal epithelial barrier impairment plays a key pathogenic role in inflammatory bowel diseases (IBDs). In particular, together with oxidative stress, intestinal epithelial barrier alteration is considered as upstream event in ulcerative colitis (UC). In order to identify new products of natural origin with a potential activity for UC treatment, this study evaluated the effects of plumericin, a spirolactone iridoid, present as one of the main bioactive components in the bark of Himatanthus sucuuba (Woodson). Plumericin was evaluated for its ability to improve barrier function and to reduce apoptotic parameters during inflammation, both in intestinal epithelial cells (IEC-6), and in an animal experimental model of 2, 4, 6-dinitrobenzene sulfonic acid (DNBS)-induced colitis. Our results indicated that plumericin increased the expression of adhesion molecules, enhanced IEC-6 cells actin cytoskeleton rearrangement, and promoted their motility. Moreover, plumericin reduced apoptotic parameters in IEC-6. These results were confirmed in vivo. Plumericin reduced the activity of myeloperoxidase, inhibited the expression of ICAM-1, P-selectin, and the formation of PAR, and reduced apoptosis parameters in mice colitis induced by DNBS. These results support a pharmacological potential of plumericin in the treatment of UC, due to its ability to improve the structural integrity of the intestinal epithelium and its barrier function.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1954
Author(s):  
John-Peter Ganda Mall ◽  
Frida Fart ◽  
Julia A. Sabet ◽  
Carl Mårten Lindqvist ◽  
Ragnhild Nestestog ◽  
...  

The effect of dietary fibres on intestinal barrier function has not been well studied, especially in the elderly. We aimed to investigate the potential of the dietary fibres oat β-glucan and wheat arabinoxylan to strengthen the intestinal barrier function and counteract acute non-steroid anti-inflammatory drug (indomethacin)-induced hyperpermeability in the elderly. A general population of elderly subjects (≥65 years, n = 49) was randomised to a daily supplementation (12g/day) of oat β-glucan, arabinoxylan or placebo (maltodextrin) for six weeks. The primary outcome was change in acute indomethacin-induced intestinal permeability from baseline, assessed by an in vivo multi-sugar permeability test. Secondary outcomes were changes from baseline in: gut microbiota composition, systemic inflammatory status and self-reported health. Despite a majority of the study population (85%) showing a habitual fibre intake below the recommendation, no significant effects on acute indomethacin-induced intestinal hyperpermeability in vivo or gut microbiota composition were observed after six weeks intervention with either dietary fibre, compared to placebo.


2020 ◽  
Vol 158 (6) ◽  
pp. S-515
Author(s):  
Maria Fernanda Roca Rubio ◽  
Ulrika Eriksson ◽  
Robert J. Brummer ◽  
Julia König

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1595
Author(s):  
Borkwei Ed Nignpense ◽  
Nidhish Francis ◽  
Christopher Blanchard ◽  
Abishek Bommannan Santhakumar

Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.


2011 ◽  
Vol 140 (5) ◽  
pp. S-474-S-475
Author(s):  
Leon McLean ◽  
Luigi Notari ◽  
Rex Sun ◽  
Jennifer A. Stiltz ◽  
Viktoriya Grinchuk ◽  
...  

2018 ◽  
Author(s):  
Pichet Praveschotinunt ◽  
Anna M. Duraj-Thatte ◽  
Ilia Gelfat ◽  
Franziska Bahl ◽  
David B. Chou ◽  
...  

AbstractThere is an unmet need for new treatment methods for inflammatory bowel disease (IBD) that can reliably maintain remission without leading to detrimental side effects. Beneficial bacteria have been utilized as an alternative treatment for IBD albeit with low efficacy. We genetically engineered Escherichia coli Nissle 1917 (EcN) to create an anti-inflammatory fibrous matrix in situ. This matrix consists of EcN-produced curli nanofibers displaying trefoil factors (TFFs), known to promote intestinal barrier function and epithelial restitution. We confirmed that engineered EcN was able to secrete the curli-fused TFFs in vitro and in vivo, and was non-pathogenic. We observed an enhanced protective effect of engineered EcN against dextran sodium sulfate induced colitis in mice, associated with barrier function reinforcement and immunomodulation. This work sets the foundation for the development of a novel therapeutic platform in which the in situ production of a therapeutic protein matrix from beneficial bacteria can be exploited.


Author(s):  
Mingxia Zhou ◽  
Jing He ◽  
Yingying Shi ◽  
Xiaoman Liu ◽  
Shangjian Luo ◽  
...  

Abstract Background and Aims There is evidence for a disturbed necroptosis function in many inflammatory diseases, but its role in inflammatory bowel diseases [IBD] and the underlying mechanisms are unclear. Here, we studied the functional significance and molecular mechanisms of ABIN3, a ubiquitin-binding protein, in regulating the ubiquitination and activation of necroptosis in IBD. Methods The expression of necroptosis hallmarks and ABIN3 were assessed in inflamed samples of IBD patients, dextran sodium sulphate [DSS]-induced colitis models, and azoxymethane [AOM]/DSS models in mice. ABIN3 was overexpressed and silenced to explore its function in regulating necroptosis, inflammation, and intestinal barrier function. Immuoprecipitiation [IP] and co-IP assays were performed to investigate the cross-talk between ABIN3 and deubiquitinating enzyme A20, and the mechanisms of coordinating ubiquitination modification to regulate necroptosis. Results Excessive necroptosis is an important contributory factor towards the uncontrolled inflammation and intestinal barrier defects in IBD and experimental colitis. Blocking necroptosis by Nec-1s or GSK’872 significantly prevented cell death and alleviated DSS-induced colitis in vivo, whereas in the AOM/DSS model, necroptosis inhibitors aggravated the severity of colitis-associated colon carcinogenesis [CAC]. Mechanistically, ABIN3 is rapidly recruited to the TNF-RSC complex, which interacts and coordinates with deubiquitinating enzyme A20 to control the K63 deubiquitination modification and subsequent activation of the critical necroptosis kinase, RIPK3, to suppress necroptosis. Conclusions ABIN3 regulates inflammatory response and intestinal barrier function by interacting with A20 and coordinating the K63 deubiquitination modification of necroptosis in IBD.


Sign in / Sign up

Export Citation Format

Share Document