Faculty Opinions recommendation of Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division.

Author(s):  
William Margolin
Author(s):  
Maria A. Schumacher ◽  
Tomoo Ohashi ◽  
Lauren Corbin ◽  
Harold P. Erickson

Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli.


2013 ◽  
Vol 57 (10) ◽  
pp. 5005-5012 ◽  
Author(s):  
Andrew D. Berti ◽  
George Sakoulas ◽  
Victor Nizet ◽  
Ryan Tewhey ◽  
Warren E. Rose

ABSTRACTThe activity of daptomycin (DAP) against methicillin-resistantStaphylococcus aureus(MRSA) is enhanced in the presence of subinhibitory concentrations of antistaphylococcal β-lactam antibiotics by an undefined mechanism. Given the variability in the penicillin-binding protein (PBP)-binding profiles of different β-lactam antibiotics, the purpose of this study was to examine the relative enhancement of DAP activity against MRSA by different β-lactam antibiotics to determine if a specific PBP-binding profile is associated with the ability to enhance the anti-MRSA activity of DAP. We determined that both broad- and narrow-spectrum β-lactam antibiotics known to exhibit PBP1 binding demonstrated potent enhancement of DAP anti-MRSA activity, whereas β-lactam antibiotics with minimal PBP1 binding (cefoxitin, ceftriaxone, cefaclor, and cefotaxime) were less effective. We suspect that PBP1 disruption by β-lactam antibiotics affects pathways of cell division inS. aureusthat may be a compensatory response to DAP membrane insertion, resulting in DAP hypersusceptibility.


2008 ◽  
Vol 52 (6) ◽  
pp. 2223-2225 ◽  
Author(s):  
Nicole Cotroneo ◽  
Robert Harris ◽  
Nancy Perlmutter ◽  
Terry Beveridge ◽  
Jared A. Silverman

ABSTRACT The ability of daptomycin to produce bactericidal activity against Staphylococcus aureus while causing negligible cell lysis has been demonstrated using electron microscopy and the membrane integrity probes calcein and ToPro3. The formation of aberrant septa on the cell wall, suggestive of impairment of the cell division machinery, was also observed.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna K. Szafrańska ◽  
Vera Junker ◽  
Matthias Steglich ◽  
Ulrich Nübel

2014 ◽  
Vol 94 (5) ◽  
pp. 1041-1064 ◽  
Author(s):  
Amy L. Bottomley ◽  
Azhar F. Kabli ◽  
Alexander F. Hurd ◽  
Robert D. Turner ◽  
Jorge Garcia‐Lara ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e42244 ◽  
Author(s):  
Jeffrey L. Bose ◽  
McKenzie K. Lehman ◽  
Paul D. Fey ◽  
Kenneth W. Bayles

2019 ◽  
Author(s):  
Nathalie T. Reichmann ◽  
Andreia C. Tavares ◽  
Bruno M. Saraiva ◽  
Ambre Jousselin ◽  
Patricia Reed ◽  
...  

Peptidoglycan (PGN) is the major component of the bacterial cell wall, a structure essential for the physical integrity and shape of the cell. Bacteria maintain cell shape by directing PGN incorporation to distinct regions of the cell, namely through the localisation of the late stage PGN synthesis proteins. These include two key protein families, SEDS transglycosylases and the bPBP transpeptidases, proposed to function in cognate pairs. Rod-shaped bacteria have two SEDS-bPBP pairs, involved in cell elongation and cell division. Here, we elucidate why coccoid bacteria, such as Staphylococcus aureus, also possess two SEDS-bPBP pairs. We determined that S. aureus RodA-PBP3 and FtsW-PBP1 likely constitute cognate pairs of interacting proteins. Lack of RodA-PBP3 decreased cell eccentricity due to deficient pre-septal PGN synthesis, whereas the depletion of FtsW-PBP1 arrested normal septal PGN incorporation. Although PBP1 is an essential protein, a mutant lacking PBP1 transpeptidase activity is viable, showing that this protein has a second function. We propose that the FtsW-PBP1 pair has a role in stabilising the divisome at midcell. In the absence of these proteins, the divisome appears as multiple rings/arcs that drive lateral PGN incorporation, leading to cell elongation. We conclude that RodA-PBP3 and FtsW-PBP1 mediate lateral and septal PGN incorporation, respectively, and that the activity of these pairs must be balanced in order to maintain coccoid morphology.


2018 ◽  
Author(s):  
Martin S. Bojer ◽  
Katarzyna Wacnik ◽  
Peter Kjelgaard ◽  
Clement Gallay ◽  
Amy L. Bottomley ◽  
...  

AbstractInhibition of cell division is critical for cell viability under DNA damaging conditions. In bacterial cells, DNA damage induces the SOS response, a process that inhibits cell division while repairs are being made. In coccoid bacteria, such as the human pathogenStaphylococcus aureus, the process remains poorly understood. Here we have characterized an SOS-induced cell-division inhibitor, SosA, inS. aureus. We find that in contrast to the wildtype,sosAmutant cells continue division under DNA damaging conditions with decreased viability as a consequence. Conversely, overproduction of SosA leads to cell division inhibition and reduced growth. The SosA protein is localized in the bacterial membrane and mutation of an extracellular amino acid, conserved between homologs of other staphylococcal species, abolished the inhibitory activity as did truncation of the C-terminal 30 amino acids. In contrast, C-terminal truncation of 10 amino acids lead to SosA accumulation and a strong cell division inhibitory activity. A similar phenotype was observed upon expression of wildtype SosA in a mutant lacking the membrane protease, CtpA. Thus, the extracellular C-terminus of SosA is required both for cell-division inhibition and for turnover of the protein. Functional studies showed that SosA is likely to interact with one or more divisome components and, without interfering with early cell-division events, halts cell division at a point where septum formation is initiated yet being unable to progress to septum closure. Our findings provide important insights into cell-division regulation in staphylococci that may foster development of new classes of antibiotics targeting this essential process.ImportanceStaphylococcus aureusis a serious human pathogen and a model organism for cell-division studies in spherical bacteria. We show that SosA is the DNA-damage-inducible cell-division inhibitor inS. aureusthat upon expression causes cell swelling and cessation of the cell cycle at a characteristic stage post septum initiation but prior to division plate completion. SosA appears to function via an extracellular activity and is likely to do so by interfering with the essential membrane-associated division proteins, while at the same time being negatively regulated by the membrane protease CtpA. This report represents the first description of the process behind cell-division inhibition in coccoid bacteria. As several pathogens are included in this category, uncovering the molecular details of SosA activity and control can lead to identification of new targets for development of valuable anti-bacterial drugs.


2015 ◽  
Vol 64 (2) ◽  
pp. 85-92
Author(s):  
MICHAŁ T. PSTRĄGOWSKI ◽  
MAGDALENA BUJALSKA-ZADROŻNY

The objective of this paper is to review and summarize the antimicrobial efficacy of the acyldepsipeptides and to indicate the prospects of the therapeutic values of these compounds. This work is enriched by the description of the mutations within the clpP1clpP2 and c1pP3clpP4 operons of Streptomyces lividans, which are considered to be the potential mechanism of the acyldepsipeptide (ADEP)-resistance development. The researchers' conclusions demonstrated a significant impact on microorganisms including the destabilization of bacterial cell division in Bacillus subtilis 168, Staphylococcus aureus HG001 and Streptococcus pneumoniae G9A strains. The results of animal studies show higher bactericidal effectiveness of the acyldepsipeptides ADEP-2 and ADEP-4 compared to linezolid. ADEPs may be considered as a very important mechanism of defense against the increasing resistance of microorganisms . They also might prevent or reduce the risk of many epidemiological events.


Sign in / Sign up

Export Citation Format

Share Document