scholarly journals Self-Navigated 3D Acoustic Tweezers in Complex Media Based on Time Reversal

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ye Yang ◽  
Teng Ma ◽  
Sinan Li ◽  
Qi Zhang ◽  
Jiqing Huang ◽  
...  

Acoustic tweezers have great application prospects because they allow noncontact and noninvasive manipulation of microparticles in a wide range of media. However, the nontransparency and heterogeneity of media in practical applications complicate particle trapping and manipulation. In this study, we designed a 1.04 MHz 256-element 2D matrix array for 3D acoustic tweezers to guide and monitor the entire process using real-time 3D ultrasonic images, thereby enabling acoustic manipulation in nontransparent media. Furthermore, we successfully performed dynamic 3D manipulations on multiple microparticles using multifoci and vortex traps. We achieved 3D particle manipulation in heterogeneous media (through resin baffle and ex vivo macaque and human skulls) by introducing a method based on the time reversal principle to correct the phase and amplitude distortions of the acoustic waves. Our results suggest cutting-edge applications of acoustic tweezers such as acoustical drug delivery, controlled micromachine transfer, and precise treatment.

Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang-geun Oh ◽  
Sang-Hoon Han ◽  
Seung-Gyo Jeong ◽  
Tae-Hwan Kim ◽  
Sangmo Cheon

AbstractAlthough a prototypical Su–Schrieffer–Heeger (SSH) soliton exhibits various important topological concepts including particle-antiparticle (PA) symmetry and fractional fermion charges, there have been only few advances in exploring such properties of topological solitons beyond the SSH model. Here, by considering a chirally extended double-Peierls-chain model, we demonstrate novel PA duality and fractional charge e/2 of topological chiral solitons even under the chiral symmetry breaking. This provides a counterexample to the belief that chiral symmetry is necessary for such PA relation and fractionalization of topological solitons in a time-reversal invariant topological system. Furthermore, we discover that topological chiral solitons are re-fractionalized into two subsolitons which also satisfy the PA duality. As a result, such dualities and fractionalizations support the topological $$\mathbb {Z}_4$$ Z 4 algebraic structures. Our findings will inspire researches seeking feasible and promising topological systems, which may lead to new practical applications such as solitronics.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Liliana Anchidin-Norocel ◽  
Sonia Amariei ◽  
Gheorghe Gutt

The aim of this paper is the development of a sensor for the quantification of nickel ions in food raw materials and foods. It is believed that about 15% of the human population suffers from nickel allergy. In addition to digestive manifestations, food intolerance to nickel may also have systemic manifestations, such as diffuse dermatitis, diffuse itching, fever, rhinitis, headache, altered general condition. Therefore, it is necessary to control this content of nickel ions for the health of the human population by developing a new method that offers the advantages of a fast, not expensive, in situ, and accurate analysis. For this purpose, bismuth oxide-screen-printed electrodes (SPEs) and graphene-modified SPEs were used with a very small amount of dimethylglyoxime and amino acid L-histidine that were deposited. A potentiostat that displays the response in the form of a cyclic voltammogram was used to study the electrochemical properties of nickel standard solution with different concentrations. The results were compared and the most sensitive sensor proved to be bismuth oxide-SPEs with dimethylglyoxime (Bi2O3/C-dmgH2) with a linear response over a wide range (0.1–10 ppm) of nickel concentrations. Furthermore, the sensor shows excellent selectivity in the presence of common interfering species. The Bi2O3/C-dmgH2 sensor showed good viability for nickel analysis in food samples (cocoa, spinach, cabbage, and red wine) and demonstrated significant advancement in sensor technology for practical applications.


2015 ◽  
Vol 59 (6) ◽  
pp. 3066-3074 ◽  
Author(s):  
Arryn Craney ◽  
Floyd E. Romesberg

ABSTRACTAntibiotic-resistant bacteria are a significant public health concern and motivate efforts to develop new classes of antibiotics. One such class of antibiotics is the arylomycins, which target type I signal peptidase (SPase), the enzyme responsible for the release of secreted proteins from their N-terminal leader sequences. Despite the essentiality, conservation, and relative accessibility of SPase, the activity of the arylomycins is limited against some bacteria, including the important human pathogenStaphylococcus aureus. To understand the origins of the limited activity againstS. aureus, we characterized the susceptibility of a panel of strains to two arylomycin derivatives, arylomycin A-C16and its more potent analog arylomycin M131. We observed a wide range of susceptibilities to the two arylomycins and found that resistant strains were sensitized by cotreatment with tunicamycin, which inhibits the first step of wall teichoic acid synthesis. To further understand howS. aureusresponds to the arylomycins, we profiled the transcriptional response ofS. aureusNCTC 8325 to growth-inhibitory concentrations of arylomycin M131 and found that it upregulates the cell wall stress stimulon (CWSS) and an operon consisting of a putative transcriptional regulator and three hypothetical proteins. Interestingly, we found that mutations in the putative transcriptional regulator are correlated with resistance, and selection for resistanceex vivodemonstrated that mutations in this gene are sufficient for resistance. The results begin to elucidate howS. aureuscopes with secretion stress and how it evolves resistance to the inhibition of SPase.


2008 ◽  
Author(s):  
Hubert Grün ◽  
Robert Nuster ◽  
Günther Paltauf ◽  
Markus Haltmeier ◽  
Peter Burgholzer

Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


Author(s):  
Qing-Mao Zeng ◽  
Tong-Lin Zhu ◽  
Xue-Ying Zhuang ◽  
Ming-Xuan Zheng

Leaf is one of the most important organs of plant. Leaf contour or outline, usually a closed curve, is a fundamental morphological feature of leaf in botanical research. In this paper, a novel shape descriptor based on periodic wavelet series and leaf contour is presented, which we name as Periodic Wavelet Descriptor (PWD). The PWD of a leaf actually expresses the leaf contour in a vector form. Consequently, the PWD of a leaf has a wide range in practical applications, such as leaf modeling, plant species identification and classification, etc. In this work, the plant species identification and the leaf contour reconstruction, as two practical applications, are discussed to elaborate how to employ the PWD of a plant leaf in botanical research.


Sign in / Sign up

Export Citation Format

Share Document