scholarly journals Effect of Zinc Oxide Nanoparticles on Loaded Antibiotics Against Multidrug-Resistant Acinetobacter spp.

2021 ◽  
Vol 8 (2) ◽  
pp. 51-56
Author(s):  
Behnaz Shokrollahi ◽  
Akram Sadat Tabatabaee Bafroee ◽  
Tayebeh Saleh

Background: Metal oxide nanoparticles (NPs) have shown promising efficacy for combating bacterial resistance due to their antibacterial properties. This research investigated the effect of zinc oxide NPs (ZnO-NPs) on the antibacterial activity of conventional antibiotics including ciprofloxacin (CIP), cefotaxime (CTX), and colistin (CST) against multidrug-resistant Acinetobacter isolates. Methods: The disc diffusion method was performed to detect the pattern of antibiotic resistance in isolates. The synthesized ZnO-NPs via the solvothermal method were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Finally, the broth microdilution technique was conducted to demonstrate the antibacterial activity of CIP, CTX, and CST antibiotics with and without a sub-inhibitory concentration of ZnO-NPs. Results: XRD, EDS, and FESEM results confirmed the crystalline structure of ZnO-NPs, and the average size was 100±58.68 nm. All isolates were discovered to be of multidrug-resistant (MDR) type and fully susceptible to CST. The antibacterial activity of CTX and CIP was restored when combined with a sub-inhibitory level of ZnO-NPs (0.25 mg/L), and the highest activity was obtained at the concentrations of 32 µg/mL CTX and 8 µg/ mL CIP. Eventually, ZnO-NPs showed a synergistic effect on the antibacterial properties of CST against MDR Acinetobacter. Conclusions: This research indicated that the combination of ZnO-NPs with some common antibiotics can be considered as a novel strategy for reducing the spread of antibiotic-resistant bacteria.

Author(s):  
Elsayim Rasha ◽  
Manal M. Alkhulaifi ◽  
Monerah AlOthman ◽  
Ibrahim Khalid ◽  
Elnagar Doaa ◽  
...  

Currently, the mortality rate in Saudi Arabia’s ICUs is increasing due to the spread of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. This study was carried out to evaluate the ability of biologically synthesized zinc oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome carbapenem-resistant K. pneumoniae (KPC) in vitro and in vivo. ZnO-NPs were synthesized via a biological method and characterized using UV–Vis spectroscopy, Zetasizer and zeta potential analyses, x-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by a macro-dilution method. The morphological alteration of KPC cells after ZnO-NPs treatment was observed by SEM. The in vivo susceptibility of KPC cells to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape, and size of the synthesized nanoparticles. The MIC and MBC were 0.7 and 1.8 mg/ml, respectively. The in vivo results displayed reduced inflammation and wound re-epithelialization of KPC-infected rats. These findings demonstrated that ZnO-NPs have great potential to be developed as antibacterial agents.


2020 ◽  
Vol 11 (3) ◽  
pp. 3372-3376
Author(s):  
Shilpa Merlyn Jose ◽  
Hannah.R ◽  
Rajeshkumar S

To determine the antibacterial activity of Zinc oxide nanoparticles synthesised using Punica granatum and Elettaria cardamomum fruit extract against Lactobacillus. Punica granatum and Elettaria cardamomum have been known for their antimicrobial, antioxidant and anti-inflammatory activity. The phytochemicals present in these fruits have experimented for the preparation of various metal and metal oxide nanoparticles. Zinc oxide is a widely used metal oxide nanoparticle known for its good antimicrobial activity against a host of microbes. The current study was conducted to determine its effect against Lactobacillus, a bacteria known for its role in the progression of dental caries. Preparation of fruit extract mediated zinc oxide nanoparticles. Determining the characteristics of the nanoparticles using UV spectroscopy and SEM. Analysing the activity of these nanoparticles against Lactobacillus using agar well diffusion method. The zone of inhibition increased if the concentration of the fruit mediated zinc oxide nanoparticles increased. But it was incomparable to the standards. Hence, further studies need to be conducted using different concentration of Punica granatum and Elettaria cardamomum to determine the optimum fruit extract required for the preparation of the nanoparticles. The resultant nanoparticles can be used as an effective antimicrobial agent against Lactobacillus


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6140
Author(s):  
Amal A. Alyamani ◽  
Salim Albukhaty ◽  
Salman Aloufi ◽  
Faizah A. AlMalki ◽  
Hassan Al-Karagoly ◽  
...  

Green nanoparticle synthesis is an environmentally friendly approach that uses natural solvents. It is preferred over chemical and physical techniques due to the time and energy savings. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) through a green method that used Phlomis leaf extract as an effective reducing agent. The synthesis and characterization of ZnO NPs were confirmed by UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, and Field Emission Scanning Electron Microscope (FESEM) techniques. In vitro cytotoxicity was determined in L929 normal fibroblast cells using MTT assay. The antibacterial activity of ZnO nanoparticles was investigated using a disk-diffusion method against S. aureus and E. coli, as well as minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) content concentrations. XRD results confirmed the nanoparticles’ crystalline structure. Nanoparticle sizes were found to be around 79 nm by FESEM, whereas the hydrodynamic radius of nanoparticles was estimated to be around 165 3 nm by DLS. FTIR spectra revealed the formation of ZnO bonding and surfactant molecule adsorption on the surface of ZnO NPs. It is interesting to observe that aqueous extracts of phlomis leave plant are efficient reducing agents for green synthesis of ZnO NPs in vitro, with no cytotoxic effect on L929 normal cells and a significant impact on the bacteria tested.


2019 ◽  
Vol 15 (2) ◽  
pp. 268-273 ◽  
Author(s):  
Raja Adibah Raja Ahmad ◽  
Zawati Harun ◽  
Mohd Hafiz Dzarfan Othman ◽  
Hatijah Basri ◽  
Muhamad Zaini Yunos ◽  
...  

Biosynthesis of metallic nanoparticles using plants, enzymes, and microorganism have been known as eco-friendly alternatives to conventional physical and chemical methods. Recently, the biological synthesis of nanoparticles has been a keen interest amongst researchers and scientist due to its simple technique, eco-friendliness, non-toxic, inexpensive and potential to perform in antibacterial activity. Thus, in this current work, the synthesis of zinc oxide (ZnO) nanoparticles using reduction agent from fruit extracts of Ananas Comosus is reported. The biosynthesized zinc oxide was characterized using Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray analysis (EDX), UV-Vis absorption spectroscopy and X-ray diffraction (XRD). The average size of the nanoparticles was found to be in the range of 30-57nm. The antibacterial activity of ZnO nanoparticles was carried out via agar diffusion method against pathogenic organisms. It is observed that the biosynthesized ZnO in the process has the efficient antibacterial activity. In conclusion, the green synthesis of zinc oxide nanoparticles using the fruit extract of Ananas Comosus is considered as a potential additive to substitute other metal oxides such as silver (Ag) and titanium dioxide (TiO2)but also provide antibacterial effect that able to enhance the nanoparticle performance.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 425
Author(s):  
Korakot Charoensri ◽  
Chatchai Rodwihok ◽  
Duangmanee Wongratanaphisan ◽  
Jung A. Ko ◽  
Jin Suk Chung ◽  
...  

Improving the antibacterial activity of biodegradable materials is crucial for combatting widespread drug-resistant bacteria and plastic pollutants. In this work, we studied polyaniline (PANI)-functionalized zinc oxide nanoparticles (ZnO NPs) to improve surface charges. A PANI-functionalized ZnO NP surface was prepared using a simple impregnation technique. The PANI functionalization of ZnO successfully increased the positive surface charge of the ZnO NPs. In addition, PANI-functionalized ZnO improved mechanical properties and thermal stability. Besides those properties, the water permeability of the bionanocomposite films was decreased due to their increased hydrophobicity. PANI-functionalized ZnO NPs were applied to thermoplastic starch (TPS) films for physical properties and antibacterial studies using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The PANI-functionalized ZnO bionanocomposite films exhibited excellent antibacterial activity for both E. coli (76%) and S. aureus (72%). This result suggests that PANI-functionalized ZnO NPs can improve the antibacterial activity of TPS-based bionanocomposite films.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2093
Author(s):  
Hidayat Mohd Yusof ◽  
Nor’Aini Abdul Rahman ◽  
Rosfarizan Mohamad ◽  
Uswatun Hasanah Zaidan ◽  
Anjas Asmara Samsudin

Since the emergence of multidrug-resistant bacteria in the poultry industry is currently a serious threat, there is an urgent need to develop a more efficient and alternative antibacterial substance. Zinc oxide nanoparticles (ZnO NPs) have exhibited antibacterial efficacy against a wide range of microorganisms. Although the in vitro antibacterial activity of ZnO NPs has been studied, little is known about the antibacterial mechanisms of ZnO NPs against poultry-associated foodborne pathogens. In the present study, ZnO NPs were successfully synthesized using Lactobacillus plantarum TA4, characterized, and their antibacterial potential against common avian pathogens (Salmonella spp., Escherichia coli, and Staphylococcus aureus) was investigated. Confirmation of ZnO NPs by UV-Visual spectroscopy showed an absorption band center at 360 nm. Morphologically, the synthesized ZnO NPs were oval with an average particle size of 29.7 nm. Based on the dissolution study of Zn2+, ZnO NPs released more ions than their bulk counterparts. Results from the agar well diffusion assay indicated that ZnO NPs effectively inhibited the growth of the three poultry-associated foodborne pathogens. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using various concentrations of ZnO NPs, which resulted in excellent antibacterial activity as compared to their bulkier counterparts. S. aureus was more susceptible to ZnO NPs compared to the other tested bacteria. Furthermore, the ZnO NPs demonstrated substantial biofilm inhibition and eradication. The formation of reactive oxygen species (ROS) and cellular material leakage was quantified to determine the underlying antibacterial mechanisms, whereas a scanning electron microscope (SEM) was used to examine the morphological changes of tested bacteria treated with ZnO NPs. The findings suggested that ROS-induced oxidative stress caused membrane damage and bacterial cell death. Overall, the results demonstrated that ZnO NPs could be developed as an alternative antibiotic in poultry production and revealed new possibilities in combating pathogenic microorganisms.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 584
Author(s):  
Omnia M. Elshayb ◽  
Khaled Y. Farroh ◽  
Heba E. Amin ◽  
Ayman M. Atta

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


2021 ◽  
Vol 11 (10) ◽  
pp. 4675
Author(s):  
Youssef Elamine ◽  
Hamada Imtara ◽  
Maria Graça Miguel ◽  
Ofélia Anjos ◽  
Letícia M. Estevinho ◽  
...  

The emergence of multidrug-resistant bacteria has prompted the development of alternative therapies, including the use of natural products with antibacterial properties. The antibacterial properties of Zantaz honey produced in the Moroccan Atlas Mountains against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus was evaluated and analyzed using chemometric tools. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against S. aureus were the lowest (112.5 ± 54.5 mg/mL), revealing that this species was most sensitive to Zantaz honey. P. aeruginosa showed an intermediate sensitivity (MIC= 118.75 ± 51.9 mg/mL), while E. coli was the most resistant to treatment (MIC = 175 ± 61.2 mg/mL). Content of monosaccharides, certain minerals, and phenolic compounds correlated with antibacterial activity (p < 0.05). Principal component analysis of physicochemical characteristics and antibacterial activity indicated that the parameters most associated with antibacterial activity were color, acidity, and content of melanoidins, fructose, epicatechin, methyl syringate, 4-coumaric acid, and 3-coumaric acid.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


Author(s):  
Bushra H. Shnawa ◽  
Samir M. Hamad ◽  
Azeez A. Barzinjy ◽  
Payman A. Kareem ◽  
Mukhtar H. Ahmed

AbstractCystic echinococcosis is a public health problem in developing countries that practice sheep breeding extensively. In the current study, the protoscolicidal activity of biosynthesized zinc oxide nanoparticles (ZnO NPs) derived from Mentha longifolia L. leaf extracts was investigated. The resultant ZnO NPs were characterized by means of various analytical techniques, such as ultraviolet–visible (UV–Vis) spectrometry, Fourier transform infrared (FT-IR) spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. The results showed that the ZnO NP had the highest scolicidal activity at 400 ppm concentration after 150 min of exposure time, showing 100% mortality rate. The treated protoscolices exhibited loss of viability with several morphological alterations. Hence, an easy and effective green synthesis of ZnO NPs, with efficient scolicidal potential, is reported in this study.


Sign in / Sign up

Export Citation Format

Share Document