scholarly journals PUMICE STONE ENGINEERING AND RICE HUSK ASH LIGHT AGGREGATE MATERIAL TO INCREASE THE COMPRESSIVE STRENGTH OF COMPOSITE LIGHTWEIGHT CONCRETE

Author(s):  
Moh Azhar ◽  
Atjep Soedarjanto ◽  
Anugraha Syah
Author(s):  
Ari Sri Wahyuni ◽  
Chundakus Habsya ◽  
Ernawati Sri Sunarsih

<p>The purposes of this research were to, (1) determine the influence of rice husk ash as smooth aggregate partial substitute and foam variation towards compressive strength, density, and absorption of lightweight foam concrete brick, (2) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the compressive strength which fulfilled SNI No. 03 – 0349 – 1989, (3) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the density lightweight concrete which fulfilled SNI No. 03 – 0349 – 1989, (4) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the absorption which fulfilled SNI No. 03 – 0349 – 1989, (5) produce course material supplement of concrete technology on the influence of using rice husk ash in lightweight foam concrete brick toward compressive strength, density, and absorption. <br />This research used experimental method and data analysis techniques used regression analysis. Variables in the study were (1) dependent variables: compressive strength, density, and absorption of lightweight foam concrete bricks, (2) independent variables: the substitute of smooth aggregate to rice husk ash with variation 0%, 25%, 35%, and 45% and foam variation 0,2 and 0,3 of concrete volume.<br />Based on the results of the study concluded that, (1) variation of rice husk ash and foam was strongly influence towards the compressive strength, density, and absorption of lightweight foam concrete bricks, (2) There was no percentage of rice husk ash and foam to achieve the compressive strength of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (3) All percentages of rice husk ash and foam variation produced the density value of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (4) All percentages of rice husk ash and foam variation produced the absorption value of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (5) the output course materials was a course materials supplement about the influence of the use rice husk ash as partly smooth agregate substitute of lightweight foam concrete brick to compressive strength, density, and absorption.</p><p>Keywords: rice husk ash, foam, lightweight foam concrete bricks.</p><span><span><br /></span></span>


2019 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Nurul Aini Sulistyowati ◽  
Deden Suripto

The aim of the research was to know the mechanical and physical properties of lightweight aggregate and compressive strength of concrete with lightweight aggregate. The raw materials for manufacturing lightweight aggregate include the mix composition of shale + sawdust, shale + rice husk, shale + rice husk ash, and shale. Th structural lightweight concrete was designed to have a compressive strength of 25 MPa. The specimen was cylindrical of 10 diameter and 20 cm high. The compressive strength of concrete tested at ages of 14 days, 21 days, and 28 days. Specific gravity of lightweight aggregate was less than 1.5, the best water absorption was of the lightweight aggregate shale and the best hardness that of the lightweight aggregate shale+ rice husk ash. The compressive strength of concrete with lightweight aggregate shale + sawdust 265.04 kg/cm2 and shale + rice husk ash 264.73 kg/cm2, all of which were higher than compressive strength. The compressive strength of concrete with lightweight aggregate shale + rice was husk 234.82 kg/cm2 and that of the shale was 212.23 kg/cm2 , which were lower than the designed compressive strength.Keywords : artificial lightweight aggregate, lightweight concrete, shale, sawdust, rice husk, rice husk ash AbstrakPenelitian bertujuan untuk mengetahui sifat fisis dan mekanis agregat ringan serta kuat tekan beton yang menggunakan agregat ringan. Pembuatan agregat ringan menggunakan komposisi campuran shale + serbuk gergaji kayu, shale + abu sekam padi, shale + sekam padi, serta shale. Pembuatan beton ringan struktural menggunakan rancangan campuran dengan kuat tekan rencana sebesar 25 MPa. Benda uji berbentuk silinder dengan diameter 10 cm dan tinggi 20 cm. Pengujian kuat tekan beton dilakukan pada umur 14 hari, 21hari dan 28 hari. Berat jenis agregat ringan kurang dari 1,5 dengan penyerapan air terbaik pada agregat ringan shale dan kekerasan terbaik pada agregat ringan shale + abu sekam padi. Kuat tekan beton agregat ringan shale + serbuk gergaji sebesar 265,04 kg/cm2 dan agregat ringan shale + abu sekam padi 264,73 kg/cm2 lebih tinggi dari kuat tekan rencana. Kuat tekan beton agregat ringan shale + sekam padi sebesar 234,82 kg/cm2 dan agregat ringan shale sebesar 212,23 kg/cm2 lebih rendah dari kuat tekan rencana.Kata kunci : agregat ringan buatan,beton ringan, shale, serbuk gergaji kayu, sekam padi, abu sekam padi


2016 ◽  
Vol 9 (1) ◽  
pp. 29-33
Author(s):  
MB Hossain ◽  
KM Shaad ◽  
MS Rahman ◽  
P Bhowmik

This research was carried out to investigate various physical properties of Rice Husk Ash (RHA) and, some physical and mechanical properties of concrete incorporating RHA in different proportions. The concrete specimens were tested at 7, 21 and 28 days after curing. Test results revealed that the specific gravity of RHA was found lower than that of sand. The density of concrete containing RHA was recorded between 80-110 lb.ft-3, which is lower than conventional concrete. Water absorption was found increasing with the increase of RHA content in concrete specimens. There were significant variations in compressive strength values of concrete containing 5%, 10% and 20% volume of RHA. The compressive strength of 5% RHA specimen was 150-200% higher than that of other specimens. Hence, upto 5% replacement of RHA could be recommended for making normal lightweight concrete. The splitting tensile strength was about 9-10% of compressive strength. It was concluded that upto 5% RHA can be used effectively in making normal lightweight concrete. The higher percentage of RHA could be used in making non-structural concrete where the strength of concrete is not concerned.J. Environ. Sci. & Natural Resources, 9(1): 29-33 2016


2015 ◽  
Vol 75 (1) ◽  
Author(s):  
Ridho Bayuaji

Foamed concrete is lightweight concrete with a green material concept. One of cement-based materials is Microwave Incinerated Rice Husk Ash (MIRHA) foamed concrete (FC) as a pozzolanic material, that is interesting to be studies since the information about the ingredient can be used to understand the product behaviors. This study is more focused on the investigation towards the effect of composer of MIRHA FC on the workability and compressive strength. The mix proportion of the MIRHA FC here was designed by means of Taguchi method with L16 orthogonal array through five parameters (MIRHA contents, water cementitious ratio (w/c), sand cement ratio (s/c), superplasticizer (SP) content, and foam content). The mixtures were tested both in fresh and hardened states to fulfill the technical requirement of FC. It was also supported by the analysis on the characteristics of concretes including its workability and compressive strength. Based on the analysis, it is shown MIRHA is capable of enhancing FC workability and strength.  


Author(s):  
Syahrun Syahrun ◽  
Sukainil Ahzan ◽  
Dwi Pangga

[Title: Test Press Concrete of Gold Processing Waste With Variation of Rice Husk Ash Composition]. Lightweight concrete has been made from waste raw materials processing of gold and ash husk of rice with cement as the supporting materials, foam, and ADT. The purposed light brick-making determined the density and compressive strength. Concrete light created by variations in waste processing of gold and ash husk of rice was respectively 10% LPE + 90% ASP, 25% + 75%, 50% + 50%, 75% + 25%, 100% + 0% (in% volume), hardening time for 11 days. Parameter test performed include density test and compressive strength test. Test results showed that the density and the compressive strength of lightweight concrete with a variation of plus gold processing waste and ash husk of rice, the amount of cement on the conditions remained and the drying time for 11 consecutive days, the density of 1.005 gr/cm3, 0.986 gr/cm3, 1.077 gr/cm3, 1.091 gr/cm3, 1.133 gr/cm3 and the compressive strength of 1.34 MPa, 1.16 MPa, 1.77 MPa, 1.03 MPa, 1.29 , The intensity of the density and the compressive strength was influenced by the amount of foam mix, rice husk ash and ADT.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3216
Author(s):  
Jin Li ◽  
Peiyuan Chen ◽  
Haibing Cai ◽  
Ying Xu ◽  
Chunchao Li

In this study, rice husk ash (RHA) was explored as a strength enhancer for mortars containing waste rubber. The effects of RHA on the flow, mechanical strength, chloride resistance, and capillary absorption of rubber mortar were investigated by substituting up to 20% cement with RHA. The experimental results showed that the incorporation of rubber into mortar could be safely achieved by adding RHA as a cement substitute by up to 20% without compromising the compressive strength of mortar. Moreover, the RHA also exerted positive effects on the enhancement of the chloride resistance as well as the capillary absorption of rubber mortars, for which 15% RHA was found to be the optimal dosage.


2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Yong Kim ◽  
Byung-Jae Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Huu-Bang Tran ◽  
Van-Bach Le ◽  
Vu To-Anh Phan

This paper presents the experimental results of the production of Nano-SiO2 (NS) from rice husk ash (RHA) and the engineering properties of High Strength Concrete (HSC) containing various NS contents. Firstly, the mesoporous silica nanoparticles were effectively modulated from RHA using NaOH solution, and subsequently precipitated with HCl solution until the pH value reached 3. The optimum synthesis for the manufacture of SiO2 nanoparticles in the weight ratio of RHA/NaOH was 1:2.4, and the product was calcined at 550 °C for 2 h. The EDX, XRD, SEM, TEM, FT-IR, and BET techniques were used to characterize the NS products. Results revealed that the characteristics of the obtained NS were satisfactory for civil engineering materials. Secondly, the HSC was manufactured with the aforementioned NS contents. NS particles were added to HSC at various replacements of 0, 0.5, 1.0, 1.5, 2.0, and 2.5% by the mass of the binder. The water-to-binder ratio was remained at 0.3 for all mixes. The specimens were cured for 3, 7, 28, 25 days under 25 ± 2 °C and a relative humidity of 95% before testing compressive and flexural strengths. Chloride ion permeability was investigated at 28 and 56 days. Results indicated that the addition of NS dramatically enhanced compressive strength, flexural strength, chloride ion resistance, and reduced chloride ion permeability compared to control concrete. The optimal NS content was found at 1.5%, which yielded the highest strength and lowest chloride ion permeability. Next, the development of flexural and compressive strengths with an age curing of 3–28 days can be analytically described by a logarithmic equation with R2 ≥ 0.74. The ACI code was used, and the compressive strength at t-day was determined based on 28 days with R2 ≥ 0.95. The study is expected to solve the redundancy of waste RHA in southern Vietnam by making RHA a helpful additive when producing high-strength concrete and contributing meaningfully to a sustainable environment.


Author(s):  
Rasheed Abdulwahab ◽  
◽  
Samson Olalekan Odeyemi ◽  
Habeeb Temitope Alao ◽  
Toyyib Adeyinka Salaudeen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document