scholarly journals Investigation of structure and properties of nanostructured polymer mixtures based on polyethylene and polyvinyl chloride

2020 ◽  
pp. 8-11
Author(s):  
N. SH. Ashurov ◽  
S. SH. Shahobutdinov ◽  
N. D. Kareva ◽  
S. M. Yugay ◽  
А. А. Atakhanov ◽  
...  

The structure, morphology, and physical and mechanical properties of nanostructured polymer-polymer mixtures based on polyethylene and polyvinyl chloride have been studied using IR-spectroscopy, X-ray diff raction analysis, optical and atomic force microscopy. The infl uence of the production method and the PE/PVC ratio on the elastic-strength properties of the composition is studied. It was found that the inclusion of a compatibilizer (block copolymer of PE with PVC) in the composition improves the compatibility of constituent components and the properties of the resulting compositions.

2012 ◽  
Vol 538-541 ◽  
pp. 101-104
Author(s):  
Shuang Chen ◽  
Cui Zhi Dong ◽  
Li Fang Zhang ◽  
Zhi Ming Yu

W-doped VO2 thin films were prepared by magnetron sputtering after annealing in vacuum. The structure, morphology, infrared transmittance and phase transition were characterized by X-ray diffractometer, atomic force microscopy(AFM), infrared spectrometer (IR) and differential thermal analysis(DTA), respectively. The results show that after vacuum annealing at 500 °C for 2h, the major phase of W doped films is VO2. Dopant reduce the phase transition temperature of VO2 thin films to 21.9°C.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1638
Author(s):  
Michał Bartmański ◽  
Łukasz Pawłowski ◽  
Aleksandra Mielewczyk-Gryń ◽  
Gabriel Strugała ◽  
Krzysztof Rokosz ◽  
...  

In this work, nanohydroxyapatite coatings with nanosilver and nanocopper have been fabricated and studied. The presented results concern coatings with a chemical composition that has never been proposed before. The present research aims to characterize the effects of nanosilver and nanocopper, dispersed in nanohydroxyapatite coatings and deposited on a new, non-toxic Ti13Zr13Nb alloy, on the physical and mechanical properties of coatings. The coatings were obtained by a one-stage electrophoretic process. The surface topography, and the chemical and phase compositions of coatings were examined with scanning electron microscopy, atomic force microscopy, X-ray diffractometry, glow discharge optical emission spectroscopy, and energy-dispersive X-ray spectroscopy. The mechanical properties of coatings were determined by nanoindentation tests, while coatings adhesion was determined by nanoscratch tests. The results demonstrate that copper addition increases the hardness and adhesion. The presence of nanosilver has no significant influence on the adhesion of coatings.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1030
Author(s):  
Arkadiusz Zarzycki ◽  
Katarzyna Dyndał ◽  
Maciej Sitarz ◽  
Jie Xu ◽  
Feng Gao ◽  
...  

In this paper, we describe a deposition method and investigation of the physical properties of WO3 films. We investigated tungsten oxide due to its potential application as a gas sensor. Thin films of the WO3 were deposited on glass, silicon, and alumina substrates by magnetron GLAD sputtering. The crystallinity of films was determined by X-ray diffraction (XRD) and the thickness by X-Ray Reflectivity (XRR) and spectroscopic ellipsometry (SE). Surface morphology, which is important for gas sensitivity, was measured by atomic force microscopy (AFM). We studied the gas-sensing characteristics under exposure to acetone in the 0.1–1.25 ppm range which covers the levels of exhaled breath acetone. We show that WO3 sensors have different sensitivity for different sputter angle. Furthermore, we demonstrate the influence of temperature during gas content measurement.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.


2014 ◽  
Vol 1025-1026 ◽  
pp. 427-431
Author(s):  
Ping Gao ◽  
Wei Zhang ◽  
Wei Tian Wang

Orthorhombic HoMnO3 films were prepared epitaxially on Nb-doped SrTiO3 single crystal substrates by using pulsed laser deposition technique. The films showed perfectly a-axis crystallographic orientations. X-ray diffraction and atomic force microscopy were used to characterize the films. The complex dielectric properties were measured as functions of frequency (40 Hz~1 MHz) and temperature (80 K~300 K) with a signal amplitude of 50 mv. The respective dielectric relaxation peaks shifted to higher frequency as the measuring temperature increased, with the same development of real part of the complex permittivity. The cole-cole diagram was obtained according to the Debye model, and the effects of relaxation process were discussed.


Sign in / Sign up

Export Citation Format

Share Document