scholarly journals PHENOLIC COMPOUNDS PROFILING AND ANTIOXIDANT CAPACITY OF FIVE ECOTYPES OF TUNISIAN JERUSALEM ARTICHOKE

2022 ◽  
Vol 06 (06) ◽  
pp. 118-127
Author(s):  
Wafa Saidi ◽  
Fatma Kalleli ◽  
Hayet Beltayef ◽  
Mahmoud M’Hamdi
Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1215
Author(s):  
Ryszard Amarowicz ◽  
Bożena Cwalina-Ambroziak ◽  
Michał A. Janiak ◽  
Bożena Bogucka

Three cultivars of Jerusalem artichoke Albik, Rubik and Gute Gelbe were grown under different nitrogen fertilization regimens: 0, 80 and 120 kg N·ha−1. Phenolic compounds were extracted from tubers using 80% (v/v) methanol. The total phenolics were determined with the Folin–Ciocâlteu reagent and antioxidant activity was assessed using the ABTS (2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)), FRAP (ferric-reducing antioxidant power), and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays. The content of individual phenolic compounds was determined by HPLC. The effect of nitrogen fertilization on the total phenolics content was observed for the Albik cultivar. In the Rubik variety the lowest content was recorded at fertilization zero, and in the Gute Gelbe variety at this fertilization level the content of phenols was the highest. At fertilization 120 kg N·ha−1, the highest ABTS test results were noted for all cultivars. For the Albik variety no effect of fertilization on the FRAP test results was noted; for the Rubik variety at zero nitrogen fertilization, the value for FRAP was the lowest, and it was the highest Gute Gelbe. The results of the DPPH test in the Gute Gelbe variety did not depend on the fertilization used. In the other two varieties, the lowest DPPH results were obtained at zero nitrogen regimen. Three main phenolic compounds were determined using HPLC. One of them was chlorogenic acid and the other two were derivatives of caffeic acid. The content of chlorogenic acid in tubers of the Gute Gelbe variety depended on nitrogen fertilization; the highest content of this compound was found in the case of fertilization zero. Statistical analysis showed a correlation between the content of phenolic compounds in tubers and their antioxidant potential. The results of this study suggest great potential for using Jerusalem artichoke tubers as a rich source of phenolic compounds with high antioxidant capacity.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 234 ◽  
Author(s):  
Yili Hong ◽  
Zening Wang ◽  
Colin J. Barrow ◽  
Frank R. Dunshea ◽  
Hafiz A. R. Suleria

Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.


2021 ◽  
Vol 348 ◽  
pp. 129063
Author(s):  
Susana Ferreyra ◽  
Carolina Torres-Palazzolo ◽  
Rubén Bottini ◽  
Alejandra Camargo ◽  
Ariel Fontana

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Adelaida Esteban-Muñoz ◽  
Silvia Sánchez-Hernández ◽  
Cristina Samaniego-Sánchez ◽  
Rafael Giménez-Martínez ◽  
Manuel Olalla-Herrera

Background: phenolic compounds are bioactive chemical species derived from fruits and vegetables, with a plethora of healthy properties. In recent years, there has been a growing interest in persimmon (Diospyros kaki L.f.) due to the presence of many different classes of phenolic compounds. However, the analysis of individual phenolic compounds is difficult due to matrix interferences. Methods: the aim of this research was the evaluation of individual phenolic compounds and antioxidant capacity of the pulp of two varieties of persimmon (Rojo Brillante and Triumph) by an improved extraction procedure together with a UPLC-Q-TOF-MS platform. Results: the phenolic compounds composition of persimmon was characterized by the presence of hydroxybenzoic and hydroxycinnamic acids, hydroxybenzaldehydes, dihydrochalcones, tyrosols, flavanols, flavanones, and flavonols. A total of 31 compounds were identified and 17 compounds were quantified. Gallic acid was the predominant phenolic compounds found in the Rojo Brillante variety (0.953 mg/100 g) whereas the concentration of p-hydroxybenzoic acid was higher in the Triumph option (0.119 mg/100 g). Conclusions: the results showed that the Rojo Brillante variety had higher quantities of phenolic compounds than the Triumph example. These data could be used as reference in future phenolic compound databases when individual health effects of phenolic compounds become available.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 105
Author(s):  
Clarice Silva e Souza ◽  
Pamella Cristine Anunciação ◽  
Ceres Mattos Della Lucia ◽  
Rosana Gonçalves Rodrigues das Dôres ◽  
Regina Célia Rodrigues de Miranda Milagres ◽  
...  

Citrus fruit is preferred in the choice of consumers. Kumquat (F. margarita) is an unconventional citrus of increasing consumer interest because of its exotic flavor, and its functional potential that offers health benefits to consumers. It is a fruit traditionally consumed by whole fruit (peel and pulp), giving this fruit a distinctive flavor. For this reason, this study analyzed the physical, chemical, and nutritional characteristics of kumquat (peel and pulp). The physicochemical analysis was performed according to the Adolfo Lutz Institute. Analysis of moisture, ashes, macronutrients, and total dietary fiber was carried out according to AOAC. Minerals were analyzed by inductively coupled plasma optical emission spectrometry. Vitamins C and E, carotenoids and flavonoids were analyzed by HPLC. Phenolic compounds (Folin-Ciocalteu) and antioxidant capacity (DPPH) were determined by spectrophotometry. The kumquat had low pH, soluble solids content and low caloric value. It was a source of dietary fiber, minerals (K, Ca, P, Mg) and carotenoids; the most expressive was α-carotene (661.81 μg 100 g−1). The ascorbic acid concentration was 2326.24 μg 100 g−1. α-tocopherol (569.00 μg 100 g−1) was the most expressive component of vitamin E. There was a presence of apigenin and eriodictyol. The fruit (peel and pulp) has a high concentration of total phenolic compounds (98.55 ± 1.93 mg GAE 100 g−1) and good antioxidant capacity (62%) was found. Kumquat is a good source of fiber and vitamin A, and due to its antioxidant capacity and the presence of other essential and beneficial nutrients for a diet, consumption of kumquat can be suggested to complement the diet. This fruit is a viable food alternative, and its consumption should be encouraged, contributing a source of income, sovereignty, and food security.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 388
Author(s):  
Xiao Dan Hui ◽  
Gang Wu ◽  
Duo Han ◽  
Xi Gong ◽  
Xi Yang Wu ◽  
...  

In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Marta C. Coelho ◽  
Tânia B. Ribeiro ◽  
Carla Oliveira ◽  
Patricia Batista ◽  
Pedro Castro ◽  
...  

In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.


Sign in / Sign up

Export Citation Format

Share Document