scholarly journals In Vitro Gastrointestinal Digestion Impact on the Bioaccessibility and Antioxidant Capacity of Bioactive Compounds from Tomato Flours Obtained after Conventional and Ohmic Heating Extraction

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Marta C. Coelho ◽  
Tânia B. Ribeiro ◽  
Carla Oliveira ◽  
Patricia Batista ◽  
Pedro Castro ◽  
...  

In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 388
Author(s):  
Xiao Dan Hui ◽  
Gang Wu ◽  
Duo Han ◽  
Xi Gong ◽  
Xi Yang Wu ◽  
...  

In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Elsa Uribe ◽  
Alvaro Delgadillo ◽  
Claudia Giovagnoli-Vicuña ◽  
Issis Quispe-Fuentes ◽  
Liliana Zura-Bravo

The aim of this work was to assess and compare different extraction methods by using high hydrostatic pressure (HHPE), ultrasound (UE), agitation (AE), and their combinations for the extraction of bioactive compounds of Chilean papaya. Extract antioxidant capacity was evaluated by three methods (i.e., DPPH, FRAP, and Voltammetry) and phenolic compounds and vitamin C were determined by HPLC. Papaya sample extraction was performed by HHPE at 500 MPa for 10 min and UE and AE for 30 min, respectively. The combined-extractions: HHPE-UE and HHPE-AE, were carried out for 5 min and 15 min, respectively. The highest values found were total phenolic 129.1 mg GAE/100 g FW, antioxidant capacity by DPPH 20.6 mM TE/100 g FW, and voltammetry 141.0 mM TE/100 g FW for HHPE-UE method in free compound extraction. Regarding vitamin C content, its highest value was found by HHPE-UE (74 mg/100 g FW) a combined extraction method. The phenolic compounds rutin andp-coumaric acid were found in all the extracts, both in free and bound forms, respectively. Besides, the combined techniques improved the extraction of bioactive compounds.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Thanh Van Ngo ◽  
Christopher James Scarlett ◽  
Michael Christian Bowyer ◽  
Phuong Duc Ngo ◽  
Quan Van Vuong

This study aimed to study the impact of selected common organic solvents on extractable solids, phytochemical composition, and antioxidant capacity of S. chinensis. The results showed that the tested solvents played an important role in extraction of total solid and phytochemical composition as well as antioxidant capacity of S. chinensis. Acetone (50% v/v) was found to be the optimal extraction solvent for extractable solids (12.2%), phenolic compounds (60 mg GAE/g DW), flavonoids (100 mg CE/g DW), proanthocyanidins (47.4 mg CE/g DW), and saponins (754 mg EE/g DW) as well as antioxidant capacity (ABTS 334 mM TE/g DW, DPPH 470 mM TE/g DW, FRAP 347 mM TE/g DW, and CUPRAC 310 mM TE/g DW). The extract prepared from 50% acetone had high levels of bioactive compounds (TPC 555 mg GAE/g CRE, flavonoids 819 mg CE/g CRE, proanthocyanidins 392 mg CE/g CRE, and saponins 1,880 mg EE/g CRE) as well as antioxidant capacity (ABTS 414 mM TE/g, DPPH 407 mM TE/g, FRAP 320 mg TE/g, and CUPRAC 623 mM TE/g), thus further confirming that 50% acetone is the solvent of choice. Therefore, 50% acetone is recommended for extraction of phenolic compounds, their secondary metabolites, saponins, and antioxidant capacity from the root of S. chinensis for further isolation and utilisation.


2020 ◽  
pp. 1-16
Author(s):  
Felipe Noriega ◽  
Claudia Mardones ◽  
Susana Fischer ◽  
Cristina García-Viguera ◽  
Diego A. Moreno ◽  
...  

BACKGROUND: The native Chilean white strawberry (Fragaria chiloensis ssp. chiloensis f. chiloensis) is a semi-domesticated crop that has a characteristic aroma and flavor and a low production in southern Chile. However, edaphoclimatic conditions can influence on fruit quality attributes and its health benefits. Establishing a link between seasonal changes and aroma or biological activity require detailed research in exploring bioactive compounds. OBJECTIVE: The present work assessed how seasonal and local changes varied the content of bioactive compounds and therefore change their aromatic quality and the response of biological activity. METHODS: White Strawberry from two seasons and two locations were investigated; FCC1, FCC2 (Fragaria chiloensis from Contulmo, 2017 and 2018 season, respectively), FCP1, FCP2 (F. chiloensis from Purén, 2017 and 2018 season, respectively). Measurement of changes on volatile compounds were studied by SPME/GC-MS. Analyses of variations on phenolic compounds were investigated by HPLC-DAD-ESI-MSn with total polyphenolic content and antioxidant capacity by using DPPH • and ORAC assays by spectrophotometric and fluorimetric methods. The relationship between different concentrations of compounds and in vitro biological activity including inhibitory tests for α-glucosidase and acetylcholinesterase were analyzed. RESULTS: In the fruit extracts, 38 volatiles and 27 phenolic compounds were identified detecting differences among the samples, being affected by climatic conditions and location. The total content of ellagic acid and its derivatives was 6.54 mg 100 g–1 FW for FCC1, showing statistical differences with respect to the rest strawberries. Nonetheless, the antioxidant capacity tests revealed high antioxidant capacity for all samples, being FCP2 the significantly highest activity (3314μmol Trolox 100 g–1 FW by DPPH • assay) compared to the rest of locations and seasons. Additional inhibitory tests α-glucosidase and acetylcholinesterase showed statistically differences due to seasonal and location changes where was observed higher ellagic acid derivates content and bioactivity. The Chilean white strawberry extracts were effective inhibitors of α-glucosidase (non-competitive) and acetylcholinesterase (competitive) activities, respectively, presenting FCC1 the most potent inhibitory effects. CONCLUSIONS: A higher ellagic acid content in Chilean white strawberry, affected by seasonal and location changes, influenced on the biological activity potential. Therefore, the relatively high antioxidant capacity, phytochemical composition and biological activity potential, of these aromatic fruits, offer a great opportunity for the rural developments, however it will be necessary to implement good practices that would guarantee batch-to-batch replicability for quality and composition of these foods for the future.


2019 ◽  
Vol 42 ◽  
pp. e44503 ◽  
Author(s):  
Ana Carolina Leme Castelucci ◽  
Paula Porrelli Moreira da Silva ◽  
Marta Helena Fillet Spoto

The fruits belonging to the family Myrtaceae are known sources of compounds with functional characteristics. Nevertheless, the studies are focused only on some species of this family. In this sense, we aimed to quantify the bioactive compounds present in the pulps of cambuci, feijoa, uvaia and grumixama; to evaluate the in vitro antioxidant capacity of each one and to correlate the contribution of these bioactive compounds with the antioxidant activity of each fruit pulp. For this, the compounds ascorbic acid, phenolic compounds, carotenoids, and flavonoids were quantified for the pulps of cambuci, feijoa, uvaia, and grumixama, as well as the in vitro antioxidant capacity by the methods DPPH and ABTS. The results were evaluated by multivariate statistical techniques. The pulps present good antioxidant potential, the one from cambuci presented the highest values for antioxidant activity given by the method DPPH (61.86 µg of Trolox g-1), that from uvaia was prominent by the presence of ascorbic acid (85.40 ascorbic acid 100 g-1) and that from feijoa, by the flavonoid contents (62.45 mg quercetin g-1) and phenolic compounds (10.21 mg gallic acid equivalent g–1). A correlation was observed between pulp antioxidant capacity and the contents of ascorbic acid and carotenoids; on the other hand, the phenolic compounds and flavonoids little contributed for the anti-free radical activity of the methods DPPH and ABTS.


2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


2021 ◽  
Vol 348 ◽  
pp. 129063
Author(s):  
Susana Ferreyra ◽  
Carolina Torres-Palazzolo ◽  
Rubén Bottini ◽  
Alejandra Camargo ◽  
Ariel Fontana

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1198
Author(s):  
Elías Arilla ◽  
Purificación García-Segovia ◽  
Javier Martínez-Monzó ◽  
Pilar Codoñer-Franch ◽  
Marta Igual

Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.


Author(s):  
Julian Alfke ◽  
Uta Kampermann ◽  
Svetlana Kalinina ◽  
Melanie Esselen

AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document