scholarly journals PENENTUAN MORFOLOGI PERMUKAAN, SIFAT FISIS DAN MEKANIK BERDASARKAN PRESENTASE KOMPOSISI BAHAN CAMPURAN BATAKO

2018 ◽  
Vol 3 (1) ◽  
pp. 59-68
Author(s):  
Selfiana Missa ◽  
Minsyahril Bukit ◽  
Andreas Christian Louk

ABSTRAK Telah dilakukan penelitian tentang kajian Morfologi Permukaan, Sifat Fisik dan Mekanik Batako dengan presentase komposisi bahan campuran batako. Penelitian ini dilakukan dengan menggunakan material tanah putih dan pasir. Selanjutnya bahan material dicampur dengan semen dengan variasi material 1:5, 1:6, 1:7, 1:8 dan 1:9. Kemudian dicetak dengan cara, pemadatan dan pengeringan. Setelah proses pengeringan dilakukan pengujian karakteristik sifat fisik dan mekanik benda uji berupa: uji kuat tekan (compression strength), densitas (density), porositas dan karakterisasi SEM. Berdasarkan analisis data, batako yang memiliki nilai densitas untuk variasi campuran tanah putih 665 mesh 2,05 gr/cm3, 2,04 gr/cm3dan 1,99 gr/cm3. Pada variasi campuran tanah putih 114 mesh 2,16 gr/cm3, 2,14 gr/cm3dan 2,05 gr/cm3. Untuk variasi campuran pasir 665 mesh 2,04 gr/cm3, 1,89 gr/cm3dan 2,11 gr/cm3. Untuk variasi campuran pasir 114 mesh 2,05 gr/cm3, 2,11 gr/cm3dan 2,02 gr/cm3.kuat tekan batako pada variasi campuran tanah putih 114 meshsebesar 20 kg/cm² memenuhi standar kuat tekan minimum mutu  IV. Sedangkan untuk porositas pada variasi campuran 1:6 dan 1:8 memenuhi standar penyerapan air pada mutu I dan mutu II. Kata kunci: Tanah putih, pasir, densitas, penyerapan air, kuat tekan dan SEM. ABSTRACT A research of determination of surface morphology, physical properties and mechanical properties of brick based on the composition of the mixture has been done. This research was done by using material of white soil and sand. Then Materials are mixted with cement with materials variation 1:5, 1:6, 1:7, 1:8 dan 1:9. Than each one was molded by means of compaction and drying.  After drying process the physical and mechanical properties of the test specimen is done in the form of compression test, density, porosity, and SEM characterization. Based on data analysis, brick with mixed variation of white soil of 665 mesh has the density value of 2,05 gr/cm3, 2,04 gr/cm3 dan 1,99 gr/cm3. For brick with mixed variation of white soilof 114 mesh has the density value are 2,16 gr/cm3, 2,14 gr/cm3dan 2,05 gr/cm3. For brick with mixed variation of sand of 665 mesh has the density value are 2,04 gr/cm3, 1,89 gr/cm3 dan 2,11 gr/cm3. For brick with mixed variation of sand of 114 mesh has the density value are 2,05 gr/cm3, 2,11 gr/cm3dan 2,02 gr/cm3. Compressive strength of brick with mixed variation of white soil of 114 mesh is 20 kg/cm² meet the minimum compressive strength standard of quality IV. While for the porosity of brick with mixed variation of 1:6 and 1:8 meet the standards of water absorption standard of quality I and quality II. Key Words : White  Soil,  sand,  density,  water  absorption,  Compressive  strength,  and  SEM

2010 ◽  
Vol 2 (6) ◽  
pp. 50-55
Author(s):  
Marija Vaičienė ◽  
Jurgita Malaiškienė

Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Ji-jing Wang ◽  
Zhen-ning Shi ◽  
Ling Zeng ◽  
Shuang-xing Qi

In order to analyze the influence of different nanoadditives on the physical and mechanical properties of similar silty mudstone materials, nano-TiO2 (NTi), nano Al2O3 (NAl), and nanobentonite (NBe) were added to improve the physical and mechanical properties of silty mudstone similar materials. The physical and mechanical parameters are more in line with silty rock. Finally, nanometer additives suitable for silty mudstone similar materials are determined by conducting density test, natural water absorption test, uniaxial compression test, splitting test, softening coefficient test, expansibility test, and microscopic test. The effects of adding NTi, NAl, and NBe on improving the physical and mechanical properties of silty mudstone similar materials were studied to analyze the influence law of different NTi, NAl, and NBe contents on similar material density, natural water absorption, uniaxial compressive strength, tensile strength, softening coefficient, expansion rate, and other physical and mechanical parameters. The microscopic morphology of similar materials was analyzed by scanning electron microscopy and the mechanism of influence of nanoadditives on the microscopic structure of samples was revealed. The results are as follows. (1) The density of similar materials of silty mudstone increases with the increase of the content of nanoadditive. The natural water absorption rate decreased first and then increased with the increase of the content of nanometer additives, while the softening coefficient decreased with the increase of the content of nanometer additives. The uniaxial compressive strength and tensile strength increased first and then decreased with the increase of the content of nanometer additives. This is due to the incorporation of the nanoadditive amount effective to promote the hydration reaction of gypsum and accelerate the production of cement, while a similar material may be filled in the pores, reducing the internal defects, a similar material to make denser; when excessive dosage, nanoadditives agglomeration occurs, resulting in deterioration of the effect, but will reduce the mechanical properties of similar materials. (2) When the content of NBe is 6%, the physical and mechanical parameters of similar materials can reach or be closer to the silty raw rock except uniaxial compressive strength. The failure mode of the uniaxial compression specimen is also the same as that of the original rock, which can be used as the best choice. The research results laid the foundation for further analysis of NBe application in similar materials.


2021 ◽  
pp. 1-11
Author(s):  
Bernard Missota Priso Dickson ◽  
Claudine Mawe Noussi ◽  
Louise Ndongo Ebongue ◽  
Joseph Dika Manga

This study focuses on the evaluation of the physical and mechanical properties of a porous material based on a mixture of powder (Volcanic ash /Aluminum Beverage Cans) and a solution of phosphoric acid. Volcanic ash (VA) use was collected in one of the quarries of Mandjo (Cameroon coastal region), crushed, then characterized by XRF, DRX, FTIR and named MaJ. The various polymers obtained are called MaJ0, MaJ2.5, MaJ5, MaJ7.5 and MaJ10 according to the mass content of the additions of the powder from the aluminum beverage cans (ABCs). The physical and mechanical properties of the synthetic products were evaluated by determining the apparent porosity, bulk density, water absorption and compressive strength. The results of this study show that the partial replacement of the powder of VA by that of ABC leads to a reduction in the compressive strength (5.9 - 0.8 MPa) and bulk density (2.56 – 1.32 g/cm3) of the polymers obtained. On the other hand, apparent porosity, water absorption and pore formation within the polymers increases with addition of the powder from the beverage cans. All of these results allow us to agree that the ABCs powder can be used as a blowing agent during the synthesis of phosphate inorganic polymers.


2014 ◽  
Vol 798-799 ◽  
pp. 554-557
Author(s):  
M.E.D. Altidis ◽  
Crislene Rodrigues da Silva Morais ◽  
P.A. Rodrigues ◽  
L.M.S. Pereira ◽  
B.F.R. Guedes

The interest in the use of industrial waste, such as sludge, has grown as an alternative both to reduce the volume of this environmental liability as in getting a product to be used in construction. This work aims to study the incorporation of waste textile sludge in concrete. The textile sludge was dried, in an oven lab, at 110oC for twenty-four hours and milled in a grinder to acquire adequate granulometry. Samples were prepared for compression strength and water absorption, the ratios 1:2, 1:3, 1:4 and 1:5 with sludge levels of substitution of 3%, 5% and 7% with 7, 28 days of curing. The results showed a tendency to increase the water absorption with increasing amount of textile sludge and decrease one with increasing cure time. Thus for compressive strength decreased with increasing content of aggregates and content of this sludge, according to the following increasing order 1:5 <1:4 <1:3 <1:2.


2016 ◽  
Vol 23 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Hakan Bolat ◽  
Pınar Erkus

AbstractConcrete is one of the materials in which polymer wastes are utilized. Generally, these wastes are added at specific rates in scientific studies but an important problem of waste polymers is size irregularity. Even when consistent dosage rates are used, variations in polymer size can lead to variability in the physical and mechanical properties of the concrete produced. The aim of this study is to determine physical and mechanical properties of polyvinyl chloride (PVC)-containing concretes. In order to produce normal and high strength concretes, 10%, 20%, and 30% replacement ratios of PVC powder and granules by volume of aggregate are used. Slump, fresh and hardened densities, compressive strength, capillary water absorption, and abrasion were tested on all concrete types. As the PVC ratio increases, important changes are seen in all physical and mechanical concrete properties. The unit weights of the 10%, 20%, and 30% replacement PVC powder concretes are lower by ∼4%, 8%, and 13%, respectively, as compared to the reference mixtures, and the replacement PVC granule concretes are lower by ∼2%, 4%, and 7%. Compressive strength test results showed similar trends. As PVC replacement increases, the capillary water absorption decreases between 10% and 50%, and abrasion decreases between 27% and 77%.


2020 ◽  
Vol 10 (11) ◽  
pp. 1900-1910
Author(s):  
Masturi ◽  
Dante Alighiri ◽  
Riful Mazid Maulana ◽  
Susilawati ◽  
Apriliana Drastisianti ◽  
...  

In this work, the effect of polyurethane binder and glass fiber as reinforcement on the physical and mechanical properties of mahogany (Swietenia mahagoni) leaves waste as biocomposite was investigated. Mahogany leaves waste has been successfully synthesized into a strong and lightweight biocomposite material by using a polyurethane binder and glass fiber as reinforcement. The mass content of polyurethane was varied between 0.25?1.50 g to obtain the optimum conditions. The contents of glass fiber added were between 0.1?0.5 g for biocomposite reinforcement. The addition of polyurethane and glass fiber mass fraction on biocomposite from mahogany leaves waste affected the physical and mechanical properties. The optimum ratio of mahogany leaves waste and polyurethane binder to produce biocomposite showed a compressive strength of 41.59 MPa, a density of 1.060 g/cm3, water absorption of 6.98%, and a thickness development of 7.27%. The addition of glass fiber material was proven to increase the compressive strength of biocomposites to 57.68 MPa. The addition of glass fiber to biocomposites also succeeded in improving physical properties. The testing of glass fiber reinforced biocomposites resulted in a density of 1.140 g/cm3, water absorption of 5.42%, and thickness development of 8.18%.


2020 ◽  
Vol 1012 ◽  
pp. 244-249
Author(s):  
Mônica Manhães Ribeiro ◽  
Lucas F. Amaral ◽  
Geovana C.G. Delaqua ◽  
Carlos M. F. Vieira ◽  
Monica C. B. Gadioli ◽  
...  

This work has as its objective to evaluate the effect of incorporation of 10 wt% of a powder waste from the sintering stage of an integrated steel-making plant in the physical and mechanical properties of bricks produced in industrial scale. Environmental tests of leaching and solubilization were performed. The results indicated that the waste slightly increased the water absorption of the ceramic and also increased in 35% its compressive strength. The sulfate parameter was above the maximum limit established by the norm for solubilization test. It was observed a strong efflorescence in the massive bricks and a smooth efflorescence in the perforated bricks.


2013 ◽  
Vol 459 ◽  
pp. 664-668
Author(s):  
Atthakorn Thongtha ◽  
Somchai Maneewan ◽  
Chantana Punlek ◽  
Yothin Ungkoon

The effect of fine sand replacement by the sugar sediment (0, 10, 15, 20, 25, 30, 35, 40, 45 and 50 weight %) on the physical and mechanical properties was studied in this work. The physical and mechanical properties of AAC with various contents of sugar sediment were focused on the density, the humidity, the water absorption, the open porosity volume, the compressive strength and the flexural strength. The average density, humidity, water absorption, volume of open porosity, compressive strength and flexural strength of all compositions had the value in the range of 0.57-0.61 g/cm3, 23.0-26.7 %, 0.38-0.40 g/cm3, 259-287 cm3, 4.4-5.9 N/mm2and 1.03-1.82 N/mm2, respectively. The maximum compressive strength and flexural strength were found from the AAC sample with the sugar sediment content of 30%, which were 5.9 N/mm2and 18.14 N/mm2. Moreover, these samples also exhibited the density (0.60 g/cm3), the humidity (23.6%), the water absorption (0.39 g/cm3) and the volume of open porosity (272 cm3) were claimed in quality class of 4. The specimens of AAC with the sugar sediment content of 0-40% were claimed in quality class of 4, which based on the Thai Industrial Standard 1505-1998.


2014 ◽  
Vol 604 ◽  
pp. 169-172 ◽  
Author(s):  
Girts Bumanis ◽  
Diana Bajare ◽  
Janis Locs

Properties of the low-calcium alkali-activated materials (AAMs) made from the metakaolin, waste glass and sand were tested in this research. Specimens with dimensions 40x40x160mm were prepared. The correlation between development of microstructure and concentration of NaOH solution used for preparing of the AAMs was observed. Structure investigation with SEM and FTIR was performed to describe the formation of microstructure in low-calcium AAMs. The research results aimed that the improvement of physical and mechanical properties of the AAMs with increasing the activator’s concentration from 2 to 10 mol/kg H2O were in concordance with the structure development of AAM. The 28 days old AAMs with a compressive strength up to 31MPa and water absorption lower than 2% were obtained by using activator with concentration 10 mol/kg H2O.


Sign in / Sign up

Export Citation Format

Share Document