Use of polyvinyl chloride (PVC) powder and granules as aggregate replacement in concrete mixtures

2016 ◽  
Vol 23 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Hakan Bolat ◽  
Pınar Erkus

AbstractConcrete is one of the materials in which polymer wastes are utilized. Generally, these wastes are added at specific rates in scientific studies but an important problem of waste polymers is size irregularity. Even when consistent dosage rates are used, variations in polymer size can lead to variability in the physical and mechanical properties of the concrete produced. The aim of this study is to determine physical and mechanical properties of polyvinyl chloride (PVC)-containing concretes. In order to produce normal and high strength concretes, 10%, 20%, and 30% replacement ratios of PVC powder and granules by volume of aggregate are used. Slump, fresh and hardened densities, compressive strength, capillary water absorption, and abrasion were tested on all concrete types. As the PVC ratio increases, important changes are seen in all physical and mechanical concrete properties. The unit weights of the 10%, 20%, and 30% replacement PVC powder concretes are lower by ∼4%, 8%, and 13%, respectively, as compared to the reference mixtures, and the replacement PVC granule concretes are lower by ∼2%, 4%, and 7%. Compressive strength test results showed similar trends. As PVC replacement increases, the capillary water absorption decreases between 10% and 50%, and abrasion decreases between 27% and 77%.

2021 ◽  
Vol 1203 (3) ◽  
pp. 032097
Author(s):  
Marija Vaiciene ◽  
Jurgita Malaiskiene

Abstract In this work is analysing the impact of wood waste bottom ash (WWBA) on the physical mechanical properties of Portland cement concrete (PCC). WWBA is a waste generated in power plants during burning forest residues to produce energy and heat. In 2019, about 19,800 tons of WWBA was generated only in Lithuania. Usually, WWBA is disposed of in landfills, only 26% of WWBA is used in the construction or maintenance of local roads, because of that it is useful to know properties of such WWBA and to analyse possibilities of using it in cement concrete. In the chemical composition of such WWBA type was fixed a big amount ~50% of CO2. It is known, that C retards cement hydration. Due to stabilisation this process, it was used in the same amounts catalyst waste from oil cracking (FCCCw), which could accelerate hydration processes. Oil refineries worldwide generate more than 800,000 tonnes of FCCCw per year, of which around 20% in Europe and it is the big problem to landfill. In the investigation the amount of Portland cement (5-20% by mass) was replaced by mentioned wastes and properties of fresh PCC (density, slump, flow diameter) and physical mechanical properties of hardened PCC (water absorption, capillary water absorption, ultrasound pulse velocity, density, compressive strength after 28 days and 2 years curing, SEM) were established. It was determined, that by increasing amount of waste (till 20%) the workability of concrete decreases, because used wastes had higher water requirement. The best results were obtained, when 5% of cement was replaced by WWBA. Then compressive strength after 28 days curing comparing to control sample decreased 8%, but after 2 years curing it increased 1%, also the capillary water absorption decreased, denser structure was formed. The obtained results of hardened PCC density, ultrasound pulse velocity and water absorption are similar to control samples.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2020 ◽  
Vol 10 (18) ◽  
pp. 6455
Author(s):  
Marianela Ripani ◽  
Hernán Xargay ◽  
Ignacio Iriarte ◽  
Kevin Bernardo ◽  
Antonio Caggiano ◽  
...  

High temperature effect on cement-based composites, such as concrete or mortars, represents one of the most important damaging process that may drastically affect the mechanical and durability characteristics of structures. In this paper, the results of an experimental campaign on cement mortars submitted to high temperatures are reported and discussed. Particularly, two mixtures (i.e., Normal (MNS) and High Strength Mortar (MHS)) having different water-to-binder ratios were designed and evaluated in order to investigate the incidence of both the mortar composition and the effects of thermal treatments on their physical and mechanical properties. Mortar specimens were thermally treated in an electrical furnace, being submitted to the action of temperatures ranging from 100 to 600 °C. After that and for each mortar quality and considered temperature, including the room temperature case of 20 °C, water absorption was measured by following a capillary water absorption test. Furthermore, uniaxial compression, splitting tensile and three-points bending tests were performed under residual conditions. A comparative analysis of the progressive damage caused by temperature on physical and mechanical properties of the considered mortars types is presented. On one hand, increasing temperatures produced increasing water absorption coefficients, evidencing the effect of thermal damages which may cause an increase in the mortars accessible porosity. However, under these circumstances, the internal porosity structure of lower w/b ratio mixtures results much more thermally-damaged than those of MNS. On the other hand, strengths suffered a progressive degradation due to temperature rises. While at low to medium temperatures, strength loss resulted similar for both mortar types, at higher temperature, MNS presented a relatively greater strength loss than that of MHS. The action of temperature also caused in all cases a decrease of Young’s Modulus and an increase in the strain corresponding to peak load. However, MHS showed a much more brittle behavior in comparison with that of MNS, for all temperature cases. Finally, the obtained results demonstrated that mortar quality cannot be neglected when the action of temperature is considered, being the final material performance dependent on the physical properties which, in turn, mainly depend on the mixture proportioning.


2010 ◽  
Vol 2 (6) ◽  
pp. 50-55
Author(s):  
Marija Vaičienė ◽  
Jurgita Malaiškienė

Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.


2021 ◽  
Vol 32 (3) ◽  
pp. 89-101
Author(s):  
Nur Nadia Nasir ◽  
◽  
Siti Amira Othman ◽  

Petroleum-based plastics have had a long history with varied materials and applications. However, the major drawback with these plastics is their harmful impact on the environment. Poor disposal management of these plastics have ultimately affected humans. Therefore, starch-based bioplastics have been widely used because of their renewability, sustainability and cost-effectiveness. This work investigated the effect of different concentrations of corn starch (10%, 15%, and 20% w/w of distilled water) and glycerol (20%, 30%, and 40% w/v of corn starch) on the properties of corn-based bioplastic films. Particularly, mechanical (tensile strength, Young’s modulus and elongation at break) and physical (water absorption rate and moisture content) properties were investigated. These films were prepared by the solvent casting method. It was demonstrated that the addition of 30% glycerol produced mechanical properties closest to the standard value, while films with a composition of 15% of corn starch had the most optimised value. Meanwhile, 20% glycerol and 20% corn starch produced a film with high strength and stiffness but lacked flexibility. Higher concentrations of starch and glycerol produced the highest moisture and water absorption rate. This was due to the highly hydrophilic nature of both corn starch and glycerol. However, the concentration of glycerol needs to be adjusted based on the intended use of the film. In conclusion, the concentration of corn starch and glycerol produced slightly different outcomes. Thus, the properties and application of the cornbased bioplastic films can be maximised by optimising the concentration of corn starch and glycerol.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaosheng Liu ◽  
Weijun Wang ◽  
Quan Liu ◽  
Chao Yuan

The backfill of metal mines is easily damaged by the disturbance due to their low strength. We proposed a method that uses flexible meshes as the backfill skeleton to enhance the strength of the backfill. The physical and mechanical properties of the flexible mesh-reinforced filling body are investigated by combining theoretical analysis and laboratory experiments. The strengthening effect is remarkable with the flexible meshes. With the friction-passive resistance between the high-strength reinforcement material and the filling body, the insufficient tensile strength of the filling body is compensated and the reinforcement is improved. The ultimate compressive strength is increased by 1.07 to 1.35 times, and the elastic modulus is increased by 1.08 to 4.42 times. We concluded that the essence of strengthening the flexible mesh-reinforced filling is to increase the cohesive force of the filling and increase the ability to resist external load damage.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012045
Author(s):  
K Grabowska ◽  
A Wieczorek ◽  
D Bednarska ◽  
M Koniorczyk

Abstract The paper explores the possibility of using organosilicon compounds (e.g., poly(dimethylsiloxane) and triethoxyoctylsilane) in commercial admixtures as internal hydrophobization agents for porous cement-based materials. The study involved the cement mortar with five different hydrophobic admixtures. Four of them is based on triethoxyoctylsilane, but with various concentration of the main ingredient, and one of them on poly(dimethylsiloxane). Mechanical properties, capillary water absorption, as well as microstructure were investigated. The organosilicon admixtures efficiently decrease the capillary water absorption even by 81% decreasing mechanical strength of cement mortar at the same time even by 55%. Only one admixture, based on poly(dimethylsiloxane) caused significant changes in microstructure of cement mortar.


2019 ◽  
Vol 803 ◽  
pp. 228-232
Author(s):  
Samer Al Martini ◽  
Ziad Hassan ◽  
Ahmad Khartabil

The current study investigates the effect of aggregate’s maximum size on the compressive strength of sustainable flowable concrete. The concrete mixtures were mixed for 2 hours under lab controlled environment. The purpose of the prolonged mixing was to simulate concrete in a transit truck during transportation to a construction site. The mechanical properties of the mixes were investigated through compressive strength test. Three groups of concrete mixes were prepared: the first one with 20 mm maximum size aggregates, the second group with 10 mm maximum size aggregates and third group with 5 mm max size. The concrete mixes incorporated GGBs and fly ash (FA) in binary blends. To maintain consistent initial slump for all mixes, polycarboxylate based high-range water-reducing admixture (HRWR) was used. The concrete compressive strength was measured at 1, 3, 7, and 28 days. The results showed that the mechanical properties of sustainable flow mixtures investigated were highly affected by FA, GGBS, and maximum size aggregates.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1012
Author(s):  
Song Nie ◽  
Jianfeng Wang ◽  
Mingzhang Lan ◽  
Yali Wang ◽  
Qiaowei Zhang

In order to improve the properties of lime-based mortars and promote the green development of the construction industry, blended lime-based mortars were prepared by using carbide slag instead of hydrated lime, and the additions of Portland cement and sulphoaluminate cement were studied in our work. The paper focused on mechanical properties, porosity, capillary water absorption and drying shrinkage of both types of blended mortars. The chemical composition and microstructure of hydration products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that sulphoaluminate cement provided more contributions to mechanical properties, capillary water absorption and early shrinkage compared to Portland cement.


Sign in / Sign up

Export Citation Format

Share Document