scholarly journals Physiological responses of Pea plants to treatment with synthetic auxins and auxin-type herbicide

Botanica ◽  
2021 ◽  
pp. 125-133
Author(s):  
Dessislava Todorova ◽  
Iskren Sergiev ◽  
Elena Shopova ◽  
Liliana Brankova ◽  
Jurga Jankauskienė ◽  
...  

The effect of exogenously applied 2,4-D (2,4-dichlorophenoxyacetic acid) on growth and antioxidant defence of pea plants, preliminary treated with two synthetic auxin compounds 1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxycarbonylmethyl]naphthalene chlormethylate (TA-14) was examined. All chemicals were applied by foliar spraying. Applied alone, TA-12 and TA-14 had no significant effects, but they modulated the 2,4-D induced changes on most investigated biochemical parameters. The shoot fresh weight reduction caused by 2,4-D was partially overcome by the use of TAs. The use of TAs partially overcame the shoot fresh weight reduction induced by 2,4-D. Apart from this, no significant changes were observed in the other biometric parameters. Treatment with 2,4-D did not enhance lipid peroxidation, and hydrogen peroxide content was slightly increased. These data indicate that treatment with 2,4-D did not cause severe oxidative stress, which is also confirmed by the results of the antioxidant defence system. The application of 2,4-D provoked mild accumulation of thiol-containing compounds, free proline and phenolic compounds and increased the antioxidant enzyme activities (GST, SOD, CAT, POD and GR) to a moderate degree. Pretreatment with TAs noticeably decreased the non-enzymatic antioxidants (free proline, total phenolics and total low-molecular thiols) compared to plants treated with 2,4-D only. Except for GR, TAs pretreatment returned the enzyme activities to levels close to the controls. Based on the results obtained, we suggest that the application of both synthetic auxins could modulate 2,4-D herbicide effects.

2008 ◽  
Vol 28 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Chandramani Pathak ◽  
Yogesh K. Jaiswal ◽  
Manjula Vinayak

Constant generation of ROS (reactive oxygen species) during normal cellular metabolism of an organism is generally balanced by a similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defence results in an increased level of ROS, causing oxidative stress, which leads to promotion of malignancy. Queuine is a hyper-modified base analogue of guanine, found at the first anticodon position of the Q-family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells; however, hypo-modification of Q-tRNAs is closely associated with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular function. Queuine is a nutrient factor for eukaryotes. It is found to promote the cellular antioxidant defence system and inhibit tumorigenesis. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase are found to be low in the DLAT (Dalton's lymphoma ascites transplanted) mouse liver compared with normal mouse liver. However, exogenous administration of queuine to the DLAT cancerous mouse improves the activities of antioxidant enzymes. These results suggest that queuine promotes the antioxidant defence system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.


1995 ◽  
Vol 9 (4) ◽  
pp. 773-778 ◽  
Author(s):  
Krishna N. Reddy ◽  
Martin A. Locke ◽  
Kevin D. Howard

Greenhouse studies were conducted to investigate the effects of adjuvant and rainfall on bentazon spray retention, efficacy, and foliar washoff in hemp sesbania, sicklepod, smooth pigweed, and velvetleaf. Bentazon was applied at 0.28 to 2.24 kg ai/ha with Agri-Dex, a crop oil concentrate (COC) or Kinetic, an organiosilicone-nonionic surfactant blend (OSB) when weeds were at the three- to five-leaf stage. Plants were subjected to 2.5 cm simulated rainfall for 20 min at 1 and 24 h after application of bentazon. Shoot fresh weight reduction assessed 2 wk after treatment was similar with either adjuvant on velvetleaf and smooth pigweed. OSB enhanced bentazon efficacy in hemp sesbania and sicklepod as compared to COC. Rainfall at 1 h after application generally reduced bentazon activity in all weeds. OSB maintained bentazon activity in hemp sesbania when subjected to rainfall at 1 h after application as compared to COC. Overall, bentazon spray retention on plants was 9 to 550% higher with OSB as compared to COC among the species at 1 h after application. Amount of bentazon residue washed off from the foliage by rainfall within a weed species was relatively similar for both adjuvants except in smooth pigweed and ranged from 39 to 98% among the four weed species at 1 h after application. OSB exhibited specificity for certain weed species and the potential to minimize bentazon spray reaching the soil by increasing deposition.


2005 ◽  
Vol 19 (3) ◽  
pp. 532-538 ◽  
Author(s):  
Carey V. Simpson ◽  
Glenn Wehtje ◽  
Charles H. Gilliam ◽  
Jeff L. Sibley ◽  
James E. Altland

Postemergence-applied diuron effectively controls yellow woodsorrel in nursery crops grown in pine bark–based container substrate. Whether the phytotoxicity of diuron on yellow woodsorrel is exclusively the result of foliar activity or is partially the result of root-based activity has not been determined. Application in which diuron was allowed to contact both the foliage and the pine bark–based substrate provided 84% control as determined by shoot fresh-weight reduction relative to that of a nontreated control. Foliar-only and root-only applications provided 52 and 12% shoot fresh-weight reduction, respectively. Absorption and translocation of foliar-applied diuron by yellow woodsorrel was evaluated using radiotracer techniques. After 24 h, 86% of the applied diuron had been absorbed, and 76% of the amount applied remained in the treated leaflet, indicating minimal translocation. Diuron sorption by the pine bark–based substrate was evaluated using radiotracer techniques. After 3 h, less than 6% of applied diuron remained in the aqueous phase, indicating 94% sorption. Exposing yellow woodsorrel roots to diuron concentrations as low as 0.50 mg/L resulted in injury, and concentrations equal to or greater than 10 mg/L resulted in death. Calculations described herein indicate the concentration that probably would occur within the aqueous solution held within the substrate following a 1.12-kg ai/ha application is sufficient to be phytotoxic to yellow woodsorrel. Thus, root-based absorption is a contributing factor in the overall efficacy of postemergence-applied diuron in controlling yellow woodsorrel.


Author(s):  
Faheema Khan

Arsenic (As) is a toxic ubiquitous metalloid. Exposure of plants to As can result in various morphological, physiological and biochemical variations. Hydroponic experiment was conducted to study the growth response, lipid peroxidation, proline and antioxidant defence system under arsenic (As) stress in the cowpea. Ten day old seedlings of cowpea grown hydroponically, were treated with 0, 25, 50, 75 and 100 µM (Na2HAsO4) sodium arsenate for 7 days and analysed for morphological and biochemical traits under As stress. Significant decline in plant root and shoot length along with biomass was recorded with increased arsenic doses, as compared to control. The As treatment resulted in increased proline and decrease in malondialdehyde (MDA) content in seedlings of cowpea with increased concentration. Enzymatic antioxidants like catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) showed increased activity in dose dependant manner over control under As stress. Results indicated lower content of MDA and enhanced activities of the enzymatic antioxidant perform a significant role in As tolerance in cowpea.


Weed Science ◽  
1991 ◽  
Vol 39 (4) ◽  
pp. 614-621 ◽  
Author(s):  
J. David Moore ◽  
Philip A. Banks

In the greenhouse, naptalam at 1.1 to 4.5 kg ai ha−1antagonized activity of paraquat at 0.04 to 0.14 kg ai ha−1in 14 of 16 rate combinations when applied to sicklepod. Sicklepod shoot fresh weight reduction was less compared to that obtained with paraquat alone when paraquat at 0.04 kg ha−1was mixed with bentazon at 0.42 to 0.84 kg ai ha−1or monocarbamide dihydrogensulfate at 14 to 58 kg ai ha−1. Paraquat activity on Florida beggarweed was antagonized by mixtures of paraquat at 0.04 or 0.07 kg ha−1with bentazon at 0.63 or 0.84 kg ha−1or paraquat at 0.04 to 0.14 kg ha−1with naptalam at 3.4 or 4.5 kg ha−1. Mixtures of lactofen at 0.06 to 0.22 kg ai ha−1with monocarbamide dihydrogensulfate at 14 kg ha−1or lactofen at 0.06 or 0.16 kg ha−1with alachlor at 1.4 to 2.8 kg ai ha−1synergistically increased tall morningglory shoot fresh weight reduction. In the field, excellent sicklepod shoot fresh weight reduction by paraquat applied alone masked most antagonistic effects of paraquat mixtures. Addition of alachlor to monocarbamide dihydrogensulfate at 29 kg ha−1improved activity on sicklepod compared to monocarbamide dihydrogensulfate applied alone.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Maria Murta Santi ◽  
Paula Alves Silva ◽  
Isabella Fernandes Martins Santos ◽  
Silvane Maria Fonseca Murta

Abstract Background Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. Results We obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A−/−/+L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A−/−/+L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A−/−/+ mutants tested. The FeSOD-A−/−/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A−/−/+ mutant clones than in the WT parasite. Conclusions The unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document