scholarly journals MORPHOMETRIC STUDY OF ISOLATED DOGIEL TYPE II CELLS OF THE INTERMUSCULAR PLEXUS

2021 ◽  
Vol 11 (3) ◽  
pp. 17-19
Author(s):  
Ramilya Babaeva

Aim of the study was to calculate the morphometric parameters of isolated Dogiel type II cells from the intermuscular plexus of the small intestine. Materials and methods: 3D models of the oval-shaped Dogiel type II cells from the intermuscular plexus of a rat (n = 1) were constructed and studied. Neurocytes were identified by the impregnation method on the frontal and horizontal sections of the wall of the small intestine. Results: The results showed that the total number of the nodes in the virtual model was 36534, and the mesh elements — 156595. The resulting 3D model of the cell and nucleus was reduced 900 times to obtain a threedimensional cell and nucleus with absolute dimensions, with a ratio of 1:1 to their true size. The volume of Dogiel type II cell was 2785.11 μm³, the volume of the nucleus was 647.7 μm³ and the volume of its perikaryon was 2785.11 μm³. Conclusion: Dogiel type II cells from the intermuscular plexus of the rat small intestine has an ovoid shaped threedimensional structure. These cells are flattened in transverse direction and elongated in longitudinal direction.

1994 ◽  
Vol 267 (5) ◽  
pp. L625-L633 ◽  
Author(s):  
L. I. Gobran ◽  
Z. X. Xu ◽  
Z. Lu ◽  
S. A. Rooney

ATP is known to stimulate surfactant phospholipid secretion in type II cells, and there is evidence that this effect is mediated by a P2 purinoceptor. At least five subtypes of the P2 receptor have been reported, but it is not clear which one exists on the type II cell. To determine whether it is the P2u subtype, at which UTP is equipotent with ATP, we have compared the effects of ATP and UTP on phosphatidylcholine secretion and second messenger formation in primary cultures of rat type II cells. ATP and UTP were equally potent in stimulating phosphatidylcholine secretion and phospholipase D activation. The potency order, UTP = ATP > ADP > 2-methylthio-ATP, was the same as that reported for the P2u receptor. UTP stimulated diacylglycerol and phosphatidic acid formation to the same extent as ATP. ATP also increased choline formation. Formation of diacylglycerol was biphasic, and the first peak in response to ATP was previously shown to be associated with inositol trisphosphate formation. Northern analysis showed that the P2u receptor gene was expressed to a greater extent in type II cells than in whole lung. These data suggest that ATP and UTP act via a P2u receptor that is coupled to phosphoinositide-specific phospholipase C with subsequent activation of phospholipase D acting on phosphatidylcholine. ATP has also been reported to act at an additional type II cell receptor coupled to adenylate cyclase. In contrast, UTP did not promote adenosine 3',5'-cyclic monophosphate formation and therefore does not act at that receptor.


1996 ◽  
Vol 271 (5) ◽  
pp. L688-L697 ◽  
Author(s):  
P. L. Sannes ◽  
J. Khosla ◽  
P. W. Cheng

The pulmonary alveolar basement membrane (BM) associated with alveolar type II cells has been shown to be significantly less sulfated than that of type I cells. To examine the biological significance of this observation, we measured the incorporation of 5-bromodeoxyuridine (BrdU) as an indicator of DNA synthesis in isolated rat type II cells cultured for 72-120 h on substrata that were naturally sulfated, not sulfated, or chemically desulfated in serum-free, hormonally defined media, with and without selected growth factors. The percentage of cells incorporating BrdU was significantly elevated by desulfated chondroitin sulfate in the presence of fibroblast growth factor-2 (FGF-2 or basic FGF) and depressed by heparin in the presence of either FGF-1 or acidic FGF or FGF-2. This depressive effect was lost by removing sulfate from the heparin. Some responses were dependent on the period of time in culture and concentration and molecular weight of the substrata. These observations support the notion that sulfation per se of certain components of BM is a key determinant of type II cell responses to select growth factors that may define patterns of proliferation and differentiation.


1991 ◽  
Vol 260 (2) ◽  
pp. L113-L122 ◽  
Author(s):  
S. L. Young ◽  
E. K. Fram ◽  
C. L. Spain ◽  
E. W. Larson

At a late stage of fetal development, the mammalian alveolar epithelium undergoes an abrupt differentiation as a part of the preparation of the lung for the postnatal demands of gas exchange. Some of the most striking changes occur in the type II pneumocytes as they lose their glycogen and start to produce the lamellated inclusion granules that contain pulmonary surfactant. Premature birth before adequate type II cell maturation results in the neonatal respiratory distress syndrome, which is frequently fatal. We have used serial ultrathin sectioning, electron microscopy, and three-dimensional reconstructions to study the ultrastructural features of maturation of rat type II cells from a single rat each at age gestational day 20 through adult stages. We found evidence over this time span for compartmentation of several secretory granule precursors within type II cells. Changes in the polarization of lamellar bodies were observed over the time period studied. We also found marked gestational changes in the number and morphology of type II cell cytoplasmic processes that perforate the basement membrane. Type II cell mitochondria changed in shape during postnatal development from single, spherical to complex, branched structures. Volume composition obtained from serial sections of a small number of type II cells agreed closely with published morphometric data, indicating that throughout the animal's lifespan, type II cells are a homogenous population.


1996 ◽  
Vol 271 (1) ◽  
pp. L23-L30 ◽  
Author(s):  
P. R. Miles ◽  
L. Bowman ◽  
L. Huffman

Alveolar type II cells may be exposed to nitric oxide (.NO) from external sources, and these cells can also generate .NO. Therefore we studied the effects of altering .NO levels on various type II cell metabolic processes. Incubation of cells with the .NO generator, S-nitroso-N-acetylpenicillamine (SNAP; 1 mM), leads to reductions of 60-70% in the synthesis of disaturated phosphatidylcholines (DSPC) and cell ATP levels. Cellular oxygen consumption, an indirect measure of cell ATP synthesis, is also reduced by SNAP. There is no direct effect of SNAP on lung mitochondrial ATP synthesis, suggesting that .NO does not directly inhibit this process. On the other hand, incubation of cells with NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), the enzyme responsible for .NO synthesis, results in increases in DSPC synthesis, cell ATP content, and cellular oxygen consumption. The L-NAME effects are reversed by addition of L-arginine, the substrate for NOS. Production of .NO by type II cells is inhibited by L-NAME, a better inhibitor of constitutive NOS (cNOS) than inducible NOS (iNOS), and is reduced in the absence of external calcium. Aminoguanidine, a specific inhibitor of iNOS, has no effect on cell ATP content or on .NO production. These results indicate that alveolar type II cell lipid and energy metabolism can be affected by .NO and suggest that there may be cNOS activity in these cells.


1997 ◽  
Vol 272 (3) ◽  
pp. L413-L417 ◽  
Author(s):  
I. Y. Adamson ◽  
L. Young ◽  
J. Bakowska

The growth of alveolar type II cells was studied when these cells were maintained for 2 days on a pulmonary endothelium-derived extracellular matrix (ECM) on a filter with or without lung fibroblasts in the lower chambers of culture wells. Type II cell proliferation was enhanced by the ECM compared with other substrates but was significantly higher with fibroblasts beneath. This was determined by thymidine uptake and cell numbers. The diffusing factor from fibroblasts appeared to be keratinocyte growth factor (KGF), because this cytokine increased type II cell growth in culture and the neutralizing antibody to KGF blocked the observed fibroblast-induced growth increase. None of the antibodies to various cytokines had any effect on the ECM-induced proliferation. Although the type II cells were shown to produce degradative activity for the ECM, there was little secreted enzyme activity in supernatants and there was no demonstrated autocrine-regulated growth effect. The results suggest that type II cell growth may be stimulated by both 1) a matrix-bound factor that acts through a cell contact-mediated process, and 2) a fibroblast-secreted factor that appears to be KGF.


1995 ◽  
Vol 268 (1) ◽  
pp. L21-L26 ◽  
Author(s):  
D. M. Bukowski ◽  
S. M. Deneke ◽  
R. A. Lawrence ◽  
S. G. Jenkinson

Type II lung epithelial cells are different from other lung cell types in their means of processing and regulating intracellular glutathione (GSH) levels. In lung cell types, including endothelial cells, fibroblasts, smooth muscle cells, and macrophages, oxidants, sulfhydryl reagents, and electrophilic agents have been shown to induce cystine uptake and concomitantly increase GSH levels, suggesting that cysteine, formed by intracellular reduction of cystine, is a rate-limiting substrate for GSH synthesis. The cystine transport increase was reportedly due to increase in activity of a sodium-independent transport system designated xc-. We have now examined cultures of rat lung type II cells exposed to diethylmaleic acid and arsenite. Although a rise in cellular GSH occurred, cystine transport was not induced. Cystine transport in type II cells was found to differ from the xc- system previously described. Type II cell cystine transport is primarily sodium dependent and is inhibitable by aspartate as well as glutamate and homocysteate. We conclude that the type II cell differs from other lung cell types in both its cystine transport mechanism and method of GSH regulation.


1996 ◽  
Vol 270 (6) ◽  
pp. L1017-L1022 ◽  
Author(s):  
I. Y. Adamson ◽  
L. Young

Most of the alveolar epithelium overlies a fused basement membrane produced by epithelial and endothelial cells. To determine how this type of matrix influences type II cell growth and function, we studied the effects of culturing isolated rat alveolar type II cells on an extracellular matrix (ECM) freshly produced by pulmonary vascular endothelial cells grown 5 days in culture. Type II cells from the same rats were cultured on plastic or Matrigel for comparison. A large increase in mitotic activity was seen in type II cells grown on the endothelial ECM at 2 days only; thereafter cells spread rapidly to confluence and lost their lamellar bodies. Cells grown on Matrigel remained cuboidal with lamellar bodies but grew more slowly, as judged by [3H]thymidine uptake and cell numbers. Incorporation of labeled choline into disaturated phosphatidylcholine (DSPC) was used as a marker of surfactant synthesis. After the rapid, brief burst of proliferation, type II cells on endothelial ECM showed a sudden decline in DSPC-DNA by day 4 compared with cells grown on matrigel. Binding of the lectin Bauhinia purpurea (BPA) indicated that after a phase of division, cells on endothelial ECM developed as type I epithelium by 4 days of culture, when > 70% of cells stained positively for BPA binding, whereas few cuboidal cells on Matrigel were stained. The results indicate that type II cells respond briefly to growth factors in pulmonary endothelial ECM; then this type of matrix promotes cell spreading with loss of type II function as cells subsequently resemble type I epithelium.


1983 ◽  
Vol 215 (3) ◽  
pp. 637-642 ◽  
Author(s):  
G L Pool ◽  
D G Bubacz ◽  
R H Lumb ◽  
R J Mason

We have examined phospholipid-transfer activities in cytosols from rat and mouse whole lung, isolated rat alveolar type II cells and alveolar type II cell-derived mouse pulmonary adenomas. We report an enrichment in phosphatidylcholine and phosphatidylglycerol (but not phosphatidylinositol) protein-catalysed transfer in the type II cell and adenoma cytosols compared with the whole-lung cytosols. The activities from these cytosols were resolved using column chromatofocusing, which clearly demonstrated the presence of a phosphatidylcholine-specific transfer protein in each of the four tissues. In addition, two proteins (rat) or three proteins (mouse) catalysing both phosphatidylcholine and phosphatidylglycerol transfer were resolved from whole lung, whereas in both the rat isolated alveolar type II cells and the mouse type II cell-derived adenomas one of these less specific proteins is not present.


2004 ◽  
Vol 287 (6) ◽  
pp. L1333-L1341 ◽  
Author(s):  
Matthias Ochs ◽  
Lars Knudsen ◽  
Lennell Allen ◽  
Amber Stumbaugh ◽  
Stacey Levitt ◽  
...  

Surfactant protein D (SP-D) is a member of the collectin subfamily of C-type lectins, pattern recognition proteins participating in the innate immune response. Gene-targeted mice deficient in SP-D develop abnormalities in surfactant homeostasis, hyperplasia of alveolar epithelial type II cells, and emphysema-like pathology. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is required for terminal differentiation and subsequent activation of alveolar macrophages, including the expression of matrix metalloproteinases and reactive oxygen species, factors thought to contribute to lung remodeling. Type II cells also express the GM-CSF receptor. Thus we hypothesized GM-CSF might mediate some or all of the cellular and structural abnormalities in the lungs of SP-D-deficient mice. To test this, SP-D (D−G+) and GM-CSF (D+G−) single knockout mice as well as double knockout mice deficient for both SP-D and GM-CSF (D−G−) were analyzed by design-based stereology. Compared with wild type, D−G+ as well as D+G− mice showed decreased alveolar numbers, increased alveolar sizes, and decreased alveolar epithelial surface areas. These emphysema-like changes were present to a greater extent in D−G− mice. D−G+ mice developed type II cell hyperplasia and hypertrophy with increased intracellular surfactant pools, whereas D+G− mice had smaller type II cells with decreased intracellular surfactant pools. In contrast to the emphysematous changes, the type II cell alterations were mostly corrected in D−G− mice. These results indicate that GM-CSF-dependent macrophage activity is not necessary for emphysema development in SP-D-deficient mice, but that type II cell metabolism and proliferation are, either directly or indirectly, regulated by GM-CSF in this model.


2005 ◽  
Vol 289 (6) ◽  
pp. L1113-L1122 ◽  
Author(s):  
Joseph L. Alcorn ◽  
James M. Stark ◽  
Constance L. Chiappetta ◽  
Gaye Jenkins ◽  
Giuseppe N. Colasurdo

Respiratory syncytial virus (RSV) is the most important cause of serious lower respiratory illness in infants and children. Surfactant proteins A (SP-A) and D (SP-D) play critical roles in lung defense against RSV infections. Alterations in surfactant protein homeostasis in the lung may result from changes in production, metabolism, or uptake of the protein within the lung. We hypothesized that RSV infection of the type II cell, the primary source of surfactant protein, may alter surfactant protein gene expression. Human type II cells grown in primary culture possess lamellar bodies (a type II cell-specific organelle) and the ability to express surfactant protein mRNA. These cells were infected with RSV (by morphology and antibody binding). Surfactant protein mRNA levels determined by quantitative RT-PCR indicated a marked increase in SP-A mRNA levels (3-fold) 24 h after RSV exposure, whereas SP-D mRNA levels were unaffected. In contrast to mRNA levels, total SP-A protein levels (determined by Western blot analysis) were decreased 40% after RSV infection. The percentage of secreted SP-A was 43% of the total SP-A in the RSV-infected cells, whereas the percentage of secreted SP-A was 61% of the total SP-A in the uninfected cells. These changes in SP-A transcript levels and protein secretion in cultured human cells were recapitulated in RSV-infected mouse lung. Our findings suggest that type II cells are potentially important targets of RSV lower respiratory infection and that alterations in surfactant protein gene expression and SP-A protein homeostasis in the lung may arise via direct effects of RSV.


Sign in / Sign up

Export Citation Format

Share Document