scholarly journals Optimization on the Injection Molding Propypopylene Parameters Using Central Composite Design for Minimizing Defects

Author(s):  
Moh. Hartono ◽  
Pratikto ◽  
Purnomo B. Santoso ◽  
Sugiono

This study aims to simultaneously forecast and investigate the optimization process characterization of the design of controlled parameters in the injection process of polypropylene molding including injection pressure combination, clamping force, injection temperature, injection speed, and holding time, and their interaction to produce qualified plastic by minimizing defects. The experimental methods used the central composite design of response surface method with five factors and a variety of levels. This method is more effective because it is an improvement on and a development from previous studies—especially those related to the plastic molding process. Additionally, it can simultaneously predict and optimize the obtaining of the highest quality plastic products as well as minimizing defects. The results are in the form of a combination of control level factors and interactions among the factors that generate the robust output of plastic products with minimum defects. Moreover, the optimum settings of the parameters provides a global solution at an injection temperature of 275°C, injection pressure of 75 bar, injection speed of 98%, clamping force of 88 tons, and a holding time of 8 seconds to generate a response to product probability defects by 0.0062. The benefit is that it can reveal the behavior and characteristics of parameter design and their interactions in the plastic injection molding process to produce qualified plastics and minimize product defects.

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Jian Wang ◽  
Qianchao Mao ◽  
Nannan Jiang ◽  
Jinnan Chen

The reinforcement and matrix of a polymer material can be composited into a single polymer composite (SPC), which is light weight, high strength, and has easy recyclability. The insert injection molding process can be used to realize the multiple production of SPC products with a short cycle time and wide processing temperature window. However, injection molding is a very complicated process; the influence of several important parameters should be determined to help in the future tailoring of SPCs to specific applications. The effects of varying barrel temperature, injection pressure, injection speed, and holding time on the properties of the insert-injection molded polypropylene (PP) SPC parts were investigated. It was found that the sample weight and tensile properties of the PP SPCs varied in different rules with the variations of these four parameters. The barrel temperature has a significant effect, followed by the holding time and injection pressure. Suitable parameter values should be determined for enhanced mechanical properties. Based on the tensile strength, a barrel temperature of 260 °C, an injection pressure of 127.6 MPa, an injection speed of 0.18 m/s, and a holding time of 60 s were determined as the optimum processing conditions. The best tensile strength and peel strength were up to 120 MPa and 19.44 N/cm, respectively.


2017 ◽  
Vol 894 ◽  
pp. 81-84 ◽  
Author(s):  
Mohd Khairul Fadzly Md Radzi ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong ◽  
Zakaria Razak

Optimization of injection molding parameters provided a solution to achieve strength improvement of kenaf filler polypropylene composites. Since, molded polymers composites possibility being effected by machine parameters and other process condition that may cause poor quality of composites product. Thus in this study, composite of kenal filler reinforced with thermoplastic polypropylene (PP) were prepared using a sigma blade mixer, followed by an injection molding process. To determine the optimal processing of injection parameters, Taguchi method with L27 orthogonal array was used on statistical analysis of tensile properties of kenaf/PP composites. The results obtained the optimum parameters which were injection temperature 190°C, injection pressure 1300 bar, holding pressure 1900 bar and injection rate 20cm3/s. From the analysis of variance (ANOVA), both flow rate and injection temperature give highest contribution factor to the mechanical properties of the kenaf/PP composites.


2011 ◽  
Vol 189-193 ◽  
pp. 537-540
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian ◽  
Rong Zhu

The use of L27 (35) orthogonal to the battery shell injection molding process is optimized. The main factors of technical parameters were determined mould temperature, melt temperature, the speed of injection, injection pressure, cooling time.On the basis of actual production, to determine the factors values of different process parameters.Combination of scrapped products in key (reduction and a high degree of tolerance deflated) tests were selected in the process parameters within the scope of the assessment. Various factors impact on the product of the total height followed by cooling time, mold temperature, melt temperature, injection pressure, injection speed from strong to weak .The best products technological parameters were determined.Good results were obtained for production.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1348 ◽  
Author(s):  
Shih-Chih Nian ◽  
Yung-Chih Fang ◽  
Ming-Shyan Huang

Injection molding is a mature technology that has been used for decades; factors including processed raw materials, molds and machines, and the processing parameters can cause significant changes in product quality. Traditionally, researchers have attempted to improve injection molding quality by controlling screw position, injection and packing pressures, and mold and barrel temperatures. However, even when high precision control is applied, the geometry of the molded part tends to vary between different shots. Therefore, further research is needed to properly understand the factors affecting the melt in each cycle so that more effective control strategies can be implemented. In the past, injection molding was a “black box”, so when based on statistical experimental methods, computer-aided simulations or operator experience, the setting of ideal process parameters was often time consuming and limited. Using advanced sensing technology, the understanding of the injection molding process is transformed into a “grey box” that reveals the physical information about the flow behavior of the molten resin in the cavity. Using the process parameter setting data provided by the machine, this study developed a scientific method for optimal parameter adjustment, analyzing and interpreting the injection speed, injection pressure, cavity pressure, and the profile of the injection screw position. In addition, the main parameters for each phase are determined separately, including injection speed/pressure during the mold filling phase, velocity-to-pressure switching point, packing pressure and time. In this study, the IC tray was taken as an example. The experimental results show that the method can effectively reduce the warpage of the IC-tray from 0.67 mm to 0.20 mm. In addition, the parameters profiles obtained by parameter optimization can be applied for continuous mass production and process monitoring.


2011 ◽  
Vol 471-472 ◽  
pp. 558-562 ◽  
Author(s):  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Mohd Fazuri Abdullah ◽  
Che Hassan Che Haron

In this paper, injection molding parameters are optimized using the L18 Taguchi orthogonal array for mechanical strength and surface quality of the green part. The feedstock used consists of stainless steel powder (SS316L) with the powder loading of 63 vol. %, 63.5 vol. % & 64 vol. %. The binder compositions used are polyethelene glycol (PEG-73 wt.%), polymethyl methacrilate (PMMA-25 wt.%) and stearic acid (4 wt.%). Mould temperature, injection temperature, injection pressure, injection time, holding time and powder loading ware selected as signal factors using Taghuci’s method based on literature, where these parameters were significant in MIM. Results showed that the optimum parameters are: mold temperature at 650C, injection temperature at1450C, injection pressure at 650 bar, injection flow rate at 20 m3/s, holding time at 5 s and powder loading of 64 vol.%. Analysis of Variance (ANOVA) result shown that mold temperature is the most influence in order to produce good green part’s surface quality while powder loading give the best result for green part’s strength.


Author(s):  
Aditya Chhabra ◽  
Karanbir Singh ◽  
Himalaya Kanwar

In today’s world, Plastic Injection molding process is one of the most widely used processes for producing plastics products. Engineering plastics is the family capable of withstanding high loading for a period of time at elevated temperatures and in adverse environmental conditions. It exhibits a good balance of high tensile strength, shear strength, toughness to use as replacement of metals in many applications. The aim of this paper is to study the effect of various parameters on the plastic part (used in automobiles). A number of experiments has been conducted by changing the main parameters used in injection molding such as Injection pressure, holding pressure, injection speed etc. All these concerned parameters are responsible for giving the required shape to the part with minimum stresses for better life of the product. Based on above parameters, the weight of the part has been varied which will also help in dimensional stability.


2014 ◽  
Vol 926-930 ◽  
pp. 345-348
Author(s):  
Lai Yu Zhu ◽  
Chun Peng Chu ◽  
Bing Yan Jiang

Reducing volumetric warpage during the injection molding process is a challenging problem in the production of microfluidic chips, as the warpage directly affects the bonding quality of the substrate and the cover sheet. In this study, the injection molding of substrate and the cover sheet, composed of PolymethylMethacrylate(PMMA), was simulated. The effect of different process parameters, holding pressure, holding time, mould temperature and injection speed, were investigated via single factor experiments, observing the warpage of the sheet with Three-Coordinate Measuring Machine. The analysis showed that the warpage was affected by non-uniform shrinkage and residual stress of the melt. Holding pressure and holding time had a greater effect on the warpage than the mould temperature and injection speed did. Therefore, reasonable holding pressure and holding time can effectively reduce the warpage of microfluidic chips in the injection molding process.


2010 ◽  
Vol 443 ◽  
pp. 69-74 ◽  
Author(s):  
Nor Hafiez Mohamad Nor ◽  
Norhamidi Muhamad ◽  
Sufizar Ahmad ◽  
Mohd Halim Irwan Ibrahim ◽  
Mohd Ruzi Harun ◽  
...  

In this paper, the titanium alloy powder of Ti-6Al-4V is mixed with binder 60wt% of palm stearin and 40wt% of polyethylene for metal injection molding (MIM) process. Injection molding parameters has been optimized using Taguchi method of L27 (313) orthogonal array. Highest green density has been identified as the green part quality characteristic or as an output for this study. Parameters optimized are the injection pressure, injection temperature, powder loading, mold temperature, holding pressure and injection speed. Besides those, interaction of the injection pressure, injection temperature and powder loading were studied. The analysis of variance (ANOVA) is employed to determine the significant levels (α) and contributions of the variables to the green density. Results show that the injection pressure has highest significant percentage followed by injection temperature, powder loading and holding pressure.


2016 ◽  
Vol 23 (2) ◽  
pp. 135-144
Author(s):  
Sinan Dönmez ◽  
Aykut Kentli

AbstractElectrical properties of plastic products can be adjusted by adding a certain amount of carbon nanotubes (CNT) in the injection molding process. However, injection molding parameters should be arranged carefully due to their influence on electrical properties of CNT-reinforced plastic composites. In this study, polycarbonate/CNT nanocomposites, having three different CNT concentrations (1, 3 and 5 wt%), were produced and injection molded by using three different injection temperatures and speeds to investigate their influence on electrical resistivity. It was found that the electrical resistivity was influenced greatly by the injection temperature when 1 wt% amount of CNT was used in the nanocomposite. However, the effect of injection speed was negligible.


Sign in / Sign up

Export Citation Format

Share Document