scholarly journals Selection of floor heating by MCDA method

2020 ◽  
Vol 18 (3) ◽  
pp. 041-050
Author(s):  
Jacek Karpiesiuk

Using Multiple-criteria Decision Analysis (MCDA), the most favorable floor heating system of a detached house has been selected. The analysis also includes an assessment of the performance of this type of heating on small surfaces (up to 20m2). The choice was made among eight heating variants, adopting various systems available on the construction market powered by water or electricity, including traditional with "wet" screeds, "dry" screeds and lightweight floor heating systems without Screeds. From the set of 14 evaluation criteria, the eight most important ones were identified. Using the summed corrected indicator of mathematical analysis, it was assessed that the best variant is a lightweight floor water heating system on a reactive adhesive without screeds with aluminum foil.

Author(s):  
Miloslav Novotný ◽  
Karel Šuhajda ◽  
Radim Kucera ◽  
Eva Šuhajdová

The aim of this study is to evaluate mutual dependences and significance of the input factors of a heating system for a family house. The input factors which are being most commonly considered are operating costs, acquisition prices on financial return rate, life span of these systems or requirements for maintenance and control. This research is focused on the analysis of three different heating systems in the common detached house; electric heating foils, heat pump and gas boiler. The building itself is evaluated in three variants; with and without a ventilation unit and with adjusted structure composition. To analyse the parameters mentioned above the Promethee method (multicriterial analysis) has been used.


Buildings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Amir Vadiee ◽  
Ambrose Dodoo ◽  
Elaheh Jalilzadehazhari

Floor heating and radiators are two of the most common types of hydronic heating systems used for space heating in single-family houses in cold climate regions. Notwithstanding, there are few comparative studies on indoor temperature distribution and system cost evaluations for radiators and floor heating. Furthermore, there are no aligned outcomes in terms of total heat supply for a single-family house with radiators or floor heating. In this study, the effect of building energy efficiency level and construction type, including flooring material, on the supply heating demand and transmission heat losses were studied for both radiator and floor heating systems. For this purpose, a single-family house located in Växjö, Sweden, was modeled as a case study. The heating demand was supplied with a district heating system with a similar supply temperature at 45 °C for both the radiator and floor heating system. A sensitivity analysis was also performed to assess the effect of flooring configurations on the annual supply heating demand for both conventional and passive versions of the case-study building. The results showed that the radiator-integrated building had a lower supply heating demand in comparison with the floor heating-integrated buildings. Based on the sensitivity studies, the flooring material did not have a significant influence on the supply heating demand and on the transmission heat losses in the case of the radiators. The supply heating demand was only reduced up to 3% if the flooring U-value was improved by 60%. The results also showed that refurbishment in a standard conventional building with a radiator heating system based on the passive criteria led to a 58% annual energy savings, while this amount for a building with a floor heating system was approximately 49%.


2019 ◽  
Vol 111 ◽  
pp. 06061
Author(s):  
Sung Ho Choi ◽  
Tae Won Kim ◽  
Jin Chul Park

This research analyzes the time lag, which is a thermal storage performance parameter, when a phase change material is applied to the floor heating system of a mock-up laboratory. The following results are obtained. In terms of the time required for the floor surface temperature to reach 30 °C, the time lag of Room 2 (i.e., the room with the PCM-based floor system) was observed to be 15 min. Additionally, in terms of the time required for the floor surface temperature to decrease to 22 °C, Room 2 exhibited a time lag of 5 h 2 min. Therefore, the study concluded that longer time lags are observed with floor heating systems with PCM.


Author(s):  
C. C. Ngo ◽  
B. A. Alhabeeb ◽  
M. Balestrieri

Radiant floor heating systems have become popular due to their advantages over conventional heating systems in residential, commercial and industrial spaces. They are also used for snow and ice melting and turf conditioning applications. This paper presents a general study focuses on the design of radiant floor heating systems and investigates the effect of design parameters such as pipe spacing (ranging from 4 in. to 12 in.), pipe depth (ranging from 2.5 in. to 6.5 in.) and pipe temperature (45 °C, 65 °C and 85 °C) on the performance of radiant floor heating system embedded in different mediums (air, gravel and sand). The experimental results showed that a radiant heating system with pipes embedded at a shallow burial depth and placed closer together resulted with a more desired floor temperature distribution. The average floor temperature was also higher when the piping system was embedded in an air-filled space instead of a porous medium such as gravel or sand.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Fang Fang ◽  
Nan Wang

With the rapid development of China’s urbanization, the proportion between the heating consumption and the energy consumption of the whole society keeps rising in recent years. For a district heating system, the selection of the heat source makes significant impact on the energy efficiency and the pollutant emissions. By integrating the methods of the Analytic Hierarchy Process (AHP) and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE), a multiple-attribute decision-making scheme for the heat source selection of district heating systems is proposed in this paper. As a core part of this scheme, a comprehensive benefit index with hierarchical parallel structure is constructed. The economic benefit, environment benefit, and technical benefit can be reflected with a certain percentage in the comprehensive benefit index. To test the efficiency of the proposed scheme, a case study for a large-scale district heating system in Beijing is carried out, where five kinds of heat sources (water source heat pump, ground source heat pump, gas-fired boiler, coal-fired boiler, and oil-fired boiler) are taken into account. The analysis and instructions for the final sorting result are also demonstrated.


2019 ◽  
Vol 10 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Lucie Horka ◽  
Jiri Hirs

This case study is aimed at transient simulation of floor heating systems. There is comparison of surface floor temperatures and heat fluxes changes of different systems over time. The first studied system is a dry floor heating system which consists of system boards made from insulation material, spreader plates, and it is covered by cement fiber boards. The second examined system is heavy wet concrete floor heating system whose heating power is set identically as heating power of dry floor heating system. Mean temperature of heating water is investigated. All simulations, both time steady-state and transient, are performed in software CalA. Reduction of duration and computational performance of simulation is achieved by creation of a surrogate model. The surrogate model evinces identical surface temperatures and heat fluxes. Total number of computational grid is reduced and therefore lower number of equations is solved. Results show that dry floor heating system has faster response than concreate floor heating system. It is caused by lower weight and lower thermal capacity of this system.


Author(s):  
C. C. Ngo ◽  
C. G. Peinder

Radiant floor heating systems are becoming increasingly popular in green building designs. Typically, solar or geothermal energy is employed as a source for such hydronic heating systems. Buried heating pipe system can be used for heating both residential and industrial spaces as well as defrosting snow on walkways, driveways and sport fields. Most of the heating pipes considered in such applications are buried in a porous medium (i.e., insulation layer or soils). Hele-Shaw cells with different pipe spacing were constructed to simulate different floor heating configurations. The objective of the present experimental study is to examine the flow field within porous medium using the Hele-Shaw analogy. The flow visualization experiment was set up to investigate how a change in pipe spacing and pipe temperature would affect the flow patterns from the heated pipes. Using time-elapsed photographs, one observes that the flow fields for different pipe spacings with different buoyancy strengths display distinct characteristics.


2019 ◽  
Vol 111 ◽  
pp. 02037
Author(s):  
Mustafa Mutlu

Dispersion of airborne particles in the office and residential areas should be well known as these particles in an enclosed volume has a significant effect on human health. In this study, the effect of the floor heating system, which is often preferred by end users due to the energy efficiency of low heating systems, on particle distribution in a room was investigated numerically. It is essential to examine the floor heating having a significant place among low heating systems, concerning particle dispersion. In enclose volumes, ambient air should be replaced with fresh air that is supplied from outdoor in order to ensure indoor air quality. However, the ideal air change rates may not be met for daily use, even in some cases air change rates might be zero. Therefore, in this study absence of air change were assumed, and after temperature and velocity distributions were determined, five different sized particles were tracked by using Eulerian-Lagrangian model. Additionally, three heating capacities (35 W/m2 41.25 W/m2 and 47 W/m2) of the floor heating system were investigated. In this study, where computational fluid dynamics were used, the effect of drag, lift, thermophoretic and Brownian forces were considered. It was found that particles were settled on walls and ceiling due to zero air change rate, and particle concentration rises in the lower part of the wall as particle diameter increases.


Author(s):  
N. Boltianska ◽  
O. Boltyanski

Purpose. To analyze the types of heating systems for heating a pig farm. Determine the factors that have a significant impact on the choice of heating and ventilation systems of the pig farm and justify the choice of the heating system for pigsties. Methods. To justify the choice of a pigsty heating system, the methods of comparative and system analysis, synthesis, scientific generalizations and the method of argumentation were used. Results. The types of heating systems for heating a pig farm are analyzed. The share of costs for heat supply and microclimate in the total costs of fuel and energy resources in pig holding facilities is given. The necessary temperature regime for sows, piglets weeks from birth and pigs for fattening was determined. The factors that have a significant influence on the selection of the system of heating and ventilation of the pig farm are determined. Conclusions. In addition to the room configuration, the choice of a heating system is significantly affected by the presence of various energy sources in the household, the equipment used and the availability of labor resources. Heating must be synchronized with the ventilation system. Given the energy efficiency and the absence of drafts in the growing sections, it is advisable to use an infrared type of heating. An effective heating system for heating a room with weaned pigs is a “warm” floor, which is advisable to use with infrared heaters. Keywords: pigsty, microclimate, heat supply, heating system, ventilation system, advantages and disadvantages, infrared heating, coolant.


2021 ◽  
Author(s):  
Sergey Polyakov

The article deals with the issues of modeling and management of residential building heating systems. The results of the analysis and selection of control system parameters are presented. A vir-tual object of the heating system of the residential building infrastructure is proposed in the light of the requirements of the «Smart City». The results confirming the achievability of the proposed structural changes are obtained.


Sign in / Sign up

Export Citation Format

Share Document