scholarly journals Tingkat Kebisingan dan Perambatan Suara Akibat Bunyi Luar Pada Gereja Masehi Injili Minahasa (GMIM) Kampus Unsrat dan GMIM Bethesda Manado

2021 ◽  
Vol 21 (2) ◽  
pp. 130
Author(s):  
Sangkertadi Sangkertadi ◽  
Ronald Manganguwi

Penelitian ini bertujuan untuk mengetahui kontribusi dinding dan arsitektur ruang serta jarak gedung ke jalan terhadap reduksi bising dari luar kedalam bangunan, dan distribusi bunyi yang terjadi. Studi kasus pada 2 gereja yaitu gereja GMIM Kampus Unsrat dan gereja GMIM Bethesda Ranotana di Kota Manado. Sebuah sumber bunyi di letakkan di luar ruang dekat pagar pada jarak 12 m terhadap gedung, dengan kuat bunyi konstan namun bervariasi antara 60 sampai dengan 100 dB dengan tahapan setiap 10 dB. Kuat bunyi dihitung dan diukur pada setiap jarak 2 m diruang luar dan dalam Gereja. Pengukuran menggunakan alat sound level meter. Perhitungan menggunakan teori akustik ruang dan software I_Simpa. Hasilnya menunjukkan bahwa konfigurasi arsitektur selubung dan ruang bangunan kedua gereja tersebut dalam keadaan kosong hanya mampu mereduksi bising sebesar 2.2 dan 3.7 dB, dengan jendela terbuka. Dengan sumber suara 100 dB di ruang luar, hasil pengukuran di ruang dalam pada kedua gereja mencapai 69.3 dB(A) dan 56.4 dB(A). Rentang bunyi tersebut masih tergolong bising dan belum memenuhi syarat kenyamanan bunyi untuk jenis bangunan ibadah menurut SNI. Visualisasi distribusi bunyi dengan menggunakan software I_Simpa, menunjukkan peran bukaan pintu dan jendela yang menyebabkan kebocoran bunyi kedalam ruangan.Kata kunci: Akustika;  bising; dinding; gereja Noise Level and Sound Propagation Due to Outside Sound at GMIM Church Unsrat Campus and GMIM Bethesda Manado ABSTRACTThis research aims to determine the contribution of walls and architectural interior, and the distance of the building to the road to the reduction of noise from outside into the building as well as the distribution of sound that occurs. Case studies on 2 churches: the GMIM Church of Unsrat Campus and the GMIM Bethesda Ranotana Church, both in Manado City. A sound source was placed outside the room near the fence at 12 m from the building. The sound source was constant but varied from 60 to 100 dB with steps every 10 dB. Sound reception was calculated and measured every 2 m distance at outside and inside. Measurements were carried out using sound level meter. Calculations by acoustic theory and I_Simpa software. The results show that the churches when room is empty, had only able to reduce the noise by 2.2 and 3.7 dB, with opened windows. When a 100 dB sound source was applied, the measurement results in the indoor of the two buildings reached 69.3 dB(A) and 56.4 dB(A). Graphical visualizations of sound distribution by using I_Simpa software, showed the role of door and opened window that cause sound leakage into the room.Keywords: Acoustic; church; noise; wall

2019 ◽  
Vol 10 (3) ◽  
pp. 184-190
Author(s):  
Mona Lestari ◽  
Desheila Andarini ◽  
Dwi Septiawati ◽  
Poppy Fujianti ◽  
Novrikasari

Palembang – Indralaya highway is a cross-provincial road where motor vehicle activity is constant, causing noise and affecting settlements along the road. Constant exposure to the noise that exceeds quality standards (55 dB) stipulated in Environmental Ministerial Decree (KEP.48/MENLH/11/1996), can cause a variety of health problems, such as hearing loss and psychological disorders. Therefore, this study is conducted to determine the noise level along the Palembang-Indralaya road. This study used an observational approach through direct observations and measurements using the Mini InScienPro SQ-100 sound level meter. The noise level is measured at two locations, i.e., on the curb and in houses located along the highway. Based on the observations and measurements, the highest noise intensity was during the daytime (78.0 - 102.4 dB). The highest intensity of noise inside and outside the house are 74 and 90 dB, respectively. This is due to the high volume and activity of vehicles crossing the highway. The intensity of the noise received by the residents along the highway is above the quality standards, so as to handle the noise, trees need to be planted around the housing (barrier plants). Keywords: Noise intensity, highway, sound level Meter


2018 ◽  
Vol 19 (2) ◽  
pp. 111
Author(s):  
Laura Anastasi Seseragi Lapono ◽  
Redi Kristian Pingak

Sound Level Meter (SLM) is a tool used to measure the noise level for a moment. For improved performance, hence required a measure of noise level capable of displaying result automatically on the computer so that simplify user to observe and measure the noise. In this study, the design system of data acquisition consists of a MAX4466 sound sensor, Arduino UNO microcontroller, and computer to display the measurement result. The measurement results are displayed in the form of data and graphs. The display of software designed using the Delphi 7.0. The process of taking data in the room with a sound intensity of 44.6 dB. The value is the measurement result using the SLM tool, while the measurement results using the sound sensor performed every second during an interval of 30 seconds obtained an average of 44.19 dB. It can be seen that between the two results shows a relatively small difference, so it can be concluded that the design of this system is running well. Keywords: Noise, SLM, Sound sensor, Arduino Uno


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Muh Azhari ◽  
Rudy Yoga Lesmana

Permasalahan lingkungan dari usaha kegiatan manusia untuk memenuhi kebutuhan hidup, seperti sandang, pangan, papan dan transportasi harus dilakukan penanganan dengan baik. Misalnya seperti pengaruh kegiatan transportasi udara terhadap kondisi kualitas lingkungan setempat  seperti kegiatan di Bandara Cilik Riwut Kelurahan Pahandut, Kecamatan Pahandut, Kota Palangka Raya Kalimantan Tengah. Metode penelitian yang digunakan merupakan metode kualitatif dengan analisis data instrumen seperti Sound Level Meter Instrument, Anemometer, GPS, Flight Radar, Google Maps Application & WECPNL Instrument (Weighted Equivalent Continuous Perceived Noise Level)  dan pengambilan data dilakukan selama tiga hari sesuai dengan kedatangan dan keberangkatan pesawat. Hasil penelitian dengan analisis WECPNL menunjukkan bahwa tingkat kebisingan di hari ke 2 lebih besar dibandingkan hari ke 3 dan hari ke 3 lebih besar dari hari ke 1 (87,2  > 82,2 > 75,9) dengan nilai rata-rata WECPNL sebesar 81,7. Kebisingan di bandara Cilik Riwut di Kota Palangka Raya Kalimantan Tengah termasuk kebisingan regional tingkat II dan III. Kegiatan yang dapat dilakukan untuk meminimalisir Risiko kebisingan tersebut yaitu dengan melakukan kegiatan rekayasa keteknikan dan menanam vegetasi yang berfungsi mengurangi kebisingan Kata kunci: Bandara, Kebisingan, Lingkungan. The environmental problems of the efforts of human activities to meet the needs of life, such as clothing, food, housing and transportation must be handled properly. For example, such as the influence of air transportation activities on local environmental quality conditions such as activities at Cilik Riwut Airport, Pahandut Village, Pahandut District, Palangka Raya City, Central of Kalimantan. The research method used is a qualitative method with data analysis instruments such as Sound Level Meter Instrument, Anemometer, GPS, Flight Radar, Google Maps Application and WECPNL Instrument (Weighted Equivalent Continuous Percepived Noise) and data collection is carried out for three days in accordance with the arrival and departure of the aircraft. Results of research with  WECPNL analysis show that the noise level on the second day is greater than the third day and the third day is greater than the first day (87,2  > 82,2 > 75,9) with  score average value is 81,7. Noise at Cilik Riwut airport in Palangka Raya City, Central Kalimantan including regional level II and III noise. activities that can be carried out are carrying out engineering activities and planting vegetation which have the function of reducing noise. Keyword: Airport, Environmental, Noice.


Author(s):  
Hiroyuki Wada ◽  
Akira Suzuki ◽  
Yasuo Sugimoto ◽  
Takeshi Sugiyama ◽  
Masanao Owaki ◽  
...  

Recently, the noise problems of electric power facilities such as noises of transformers, fans, or corona noises of insulators are increasing. When the noises exceed the regulation level on the boundary of site or cause bad influence on in-house workers, effective measures should be taken against noises to solve them. When considering the measures against noises, the sound source and loudness of the noises should be specified. But the accurate evaluation of the target sound by using sound level meter is difficult, because the sound which reaches the noise meter is the sound which contains unrelated sound except for the target. So authors have developed the sound-visualizing camera that can investigate the direction of sound with each frequency every 1Hz. In this paper, authors explain the principle and experimental results of the sound-visualizing camera and its application to various fields.


Author(s):  
Faradiba Faradiba

<p class="AbstractEnglish"><strong>Abstract:</strong>. Noise is a sound that can cause discomfort. One of them is rail activity. Noise generated enough to bring negative impacts to the surrounding environment, especially in the school environment.. This research uses descriptive analysis method with cross sectional approach. The location of this research is the school that is right next to the railway crossing i.e. SMA Negeri 37 Jakarta. Noise level data retrieval is performed using a sound level meter applications android-based. The data measured by the instantaneous sound pressure level for 5 minutes, or Leq (5 minutes) for each measurement point. There are 5 point measurements. From the results of measurements at SMA Negeri 37 Jakarta gained an average noise level for 5 measurement point is 70.50 dB. The figure exceeds the threshold if refers to the Kep-48 MNLH/11/1996 to 55,00 dB maximum school environment. Necessary noise control efforts at that school to minimise the negative impact caused. Because of the higher the intensity of noise, the more negative impact, especially for students in the school.<strong></strong></p><p class="KeywordsEngish"> </p><p class="AbstrakIndonesia"><strong>Abstrak:</strong> Bising merpukan sebuah bunyi yang dapat menimbulkan ketidaknyamanan. Salah satu yang mengakibatkan timbulnya suara bising yang cukup tinggi adalah aktivitas kereta api. Kebisingan yang dihasilkan cukup membawa dampak negatif bagi lingkungan disekitarnya, khususnya di lingkungan sekolah. penelitian ini menggunakan metode analisis deskriptif dengan pendekatan <em>cross sectional. </em>Lokasi penelitian ini adalah sekolah yang berada tepat di samping perlintasan rel kereta api yaitu SMA Negeri 37 Jakarta.<em> </em>Pengambilan data tingkat kebisingan dilakukan dengan menggunakan aplikasi <em>sound level meter</em><em> </em>berbasis android. Data diukur dengan tingkat tekanan bunyi sesaat selama 5 menit, atau Leq (5 menit) untuk setiap titik pengukuran. Terdapat 5 titik pengukuran. Dari hasil pengukuran pada SMA Negeri 37 Jakarta diperoleh rata-rata tingkat kebisingan untuk 5 titik pengukuran adalah 70,50 dB. Angka tersebut melebihi ambang batas jika merujuk pada Kep-48 MNLH/11/1996 untuk lingkungan sekolah maksimum 55 dB. Diperlukan upaya-upaya pengendalian kebisingan pada sekolah tersebut untuk meminimalisir dampak negatif yang ditimbulkan. Karena semakin tinggi instensitas kebisingan semakin memberikan dampak negatif khususnya bagi siswa di sekolah  tersebut.</p>


2017 ◽  
Vol 16 (2) ◽  
Author(s):  
Afgan Suffan Aviv ◽  
Bambang Suhardi ◽  
Pringgo Widyo Laksono

<p><em>Implementation of ergonomics is generally a design or redesign. One of them may include the design of the physical work environment. Ergonomic work environment conditions are provide comfort and security for workers. Physical environmental factors that can affect the comfort and safety of noise level.  A good physical work environment will increase work capability or labor productivity. In a work environment, workload assessment can also be carried out to measure worker conformity and comfort. Workload assessment is carried out simultaneously with measurement of noise level . </em></p><p><em>Whose problematic noise, the industry is located in Tawangsari RT 03 RW 34 Mojosongo, Jebres, Surakarta named Yessy's Collection. Measurement of noise level to improve worker comfort, so that productivity increases. The methode used is measurement using 4 in 1 Environment on sound level meter function illustrated with Software Surfer 11.</em></p><em> The noise level measurement results are below the specified threshold value except at 1 coordinate in swabing station (stasiun penyesekan),that is  at above threshold value. To proposed improvements as noise control is engineering control, administrative control and use of PPE</em>


2019 ◽  
Vol 10 (02) ◽  
pp. 20585-20591
Author(s):  
Adrian Pradana ◽  
I Made Tamba ◽  
I Ketut Widnyana

This research was conducted to analyze the level of traffic noise in Lumintang City Park, Denpasar. The measurement method is by using a direct method that is using an integrating sound level meter that has an LTMS measurement facility, namely Leq with a measuring time every 5 seconds. The examination is carried out by measuring for 10 minutes. The measurement time is carried out during the 24 hour activity (NGO) on December 3, 2018. The measurement distance ranges from 5-10 meters from the road, with a height of 1-1.2 m from the ground level. The results of the research on the level of traffic noise in Lumintang City Park Denpasar showed the noise level that exceeded the noise level quality standards of the green open space area of 50 dB, where in the first lane the traffic noise level was 92.52 dB at L3. While the noise research in lane 2 shows that the highest traffic noise level of 85.70 dB occurs at L5. For day and night (NGO) noise levels in lane 1 amounting to 70.13 dB and lane 2 of 67.95 dB has exceeded the quality standard of green open space, so that it can cause physical and psychological disturbances for visitors to the Taman Lumintang City of Denpasar..


2021 ◽  
pp. 114-128
Author(s):  
Viviano GARCÍA-SANCHEZ ◽  
◽  
Daniel MALDONADO-ONOFRE ◽  
Luis Antonio MIER-QUIROGA ◽  
Elvis COUTIÑO-MORENO ◽  
...  

The investigation allowed the evaluation of the levels of noise in dedicated factories to the manufacture of decorativas resin figures, located in a population of the north of the Municipality of Toluca State Capital of Mexico. The study was developed with the objective to count on a reference mechanism to prevent risks to the health derived from the level with exhibition to the noise generated in this type of facilities, in such a way that the proprietors can protect to their personnel guaranteeing the development of their activities and not see themselves involved in labor demands. The investigation was limited the study of a single factory solely that is representative of the activities that are made normally in all the factories located in the zone, of which exist more than 50. For the measurements of the noise level, an integrating sound level meter was used type 2, of mark CEL Instruments® model CEL-328 and for the calibration of this was used an acoustic calipers mark CEL Instruments®, model CEL-282, series 2/11616221; the measurements and calibration were made taking in account the effective legislation in the matter of noise according to the Official Norm Mexicana NOM-011- STPS-2001, Conditions of Security and Hygiene in the Centers of Work Where Noise Is generated. Of the analysis of results it was observed that the level of noise in the areas of rectified and music, was with a NSCEAT, greater of 90 dB and in the remaining areas was smaller, but require of preventive measures since all presented/displayed 80 a greater NSCE of dB. In general the level of exhibition to the noise (NER) of the factory is of 86,6 dB, this value according to the norm applied in this study is necessary to implement some measures that allow to diminish the levels of noise with the purpose of avoiding labor diseases derived from the noise.


ASTONJADRO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195
Author(s):  
Syaiful Syaiful ◽  
Almas Fathin Irbah

<p>Bogor Regency has an economic growth rate including the highest among cities and other districts around the Jakarta Capital Region. Regarding the condition of the vehicle population in Bogor district, the number of motorized vehicles in 2017 and 2018 experienced a growth of between 2% and 12%. In contrast to the growth rate of vehicles, the road growth rate is only 0.1% per year. Nurul Hidayah Mosque is located on Jalan Salabenda, the object of the author's research to find out how much influence the sound of motorized vehicles has on worship activities around the Nurul Hidayah mosque. In public transport car speed, motorcycle speed, and private car speed do not have a significant effect on the noise pollution produced. The noise level around the Nurul Hidayah Mosque, Jalan Salabenda Raya, Bogor Regency which has been measured the smallest is 56.4 dBA. This value exceeds the noise threshold of the Noise Level Standard Value for the Ministerial Decree, which is 55 dBA. So that it requires attention and cooperation from the government and the community to overcome the noise in the worship area. The calculation and analysis obtained is on the equation with the largest R Square value on the fourth day of the study, the third point (Sound Level Meter 3), with a contribution of 22.67%. Like the equation on the side, y = 73.251 + 0.004x<sub>1</sub>-0.311x<sub>2</sub>-0.003x<sub>3</sub>. The meaning of this equation is that if there is no decrease in the speed of motorbikes, private cars and public transport cars, the noise pollution level in SLM3 is 73,251 dBA. If there is an increase in the speed of public transport cars by 0.004, the decrease of motorbikes by 0.311, and an increase in the speed of private cars by 0.003, the noise pollution level will decrease by 0.31 dBA at SLM3.</p>


2004 ◽  
Vol 31 (4) ◽  
pp. 533-538 ◽  
Author(s):  
Saad Abo-Qudais ◽  
Arwa Alhiary

The main objective of this study was to evaluate the variation in traffic equivalent noise levels as distance from the road intersection increases. To achieve this objective, traffic volume and equivalent noise level were monitored at 40 signalized intersections in Amman, the capital of Jordan. An integrated sound level meter (ISLM) was used to measure 1 min equivalent noise level along all approaches of the evaluated intersections. A total of 3326 noise measurements were performed. The collected data were analyzed to evaluate the variation of noise levels as distance from the intersection increases. The results indicated that equivalent noise levels were significantly affected by distance from the signal stop line. The equivalent noise levels at distances 50 and 100 m from the intersection were found to be 1.5 to 2.0 dB less than those at 0 m. While at 200, 250, and 300 m from the intersection, the monitored equivalent noise levels were found to be 3.8 to 4 dB higher than that at 0 m. At distances farther than 250 m, the measured equivalent noise levels tend to keep constant value of equivalent noise level as distance increased.Key words: noise, traffic, intersection, environment, pollution.


Sign in / Sign up

Export Citation Format

Share Document