Effects of substrate phonon absorption on the resonance behavior of metal-insulator-metal metamaterial terahertz absorbers

Author(s):  
Tianye Niu ◽  
Boqi Qiu ◽  
Ya Zhang ◽  
Kazuhiko HIRAKAWA

Abstract We have investigated effects of substrate phonon absorption on the resonance behavior of metal-insulator-metal double layer metamaterial absorbers in the terahertz frequency range. A sharp resonant absorption dip is clearly observed for a metamaterial-on-ground-plane structure fabricated on a GaAs substrate when THz radiation is incident from the surface metamaterials side. However, when the THz is incident from the substrate side to the ground-plane-on-metamaterial structures fabricated on a GaAs substrate, the resonance dip is almost merged into the broad background of acoustic phonon absorption. The resonant absorption is recovered when the GaAs substrate is replaced with a high-resistivity Si substrate.

MRS Advances ◽  
2019 ◽  
Vol 4 (11-12) ◽  
pp. 667-674 ◽  
Author(s):  
Rachel N. Evans ◽  
Seth R. Calhoun ◽  
Jonathan R. Brescia ◽  
Justin W. Cleary ◽  
Evan M. Smith ◽  
...  

ABSTRACTMetal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a dielectric of thickness t, and thin separated metal top-surface structures of dimension l. The fundamental resonance wavelength is predicted by an analytic standing-wave model based on t, l, and the dielectric refractive index spectrum. For the dielectrics SiO2, AlN, and TiO2, values for l of a few microns give fundamental resonances in the 8-12 μm long-wave infrared (LWIR) wavelength region. Agreement with theory is better for t/l exceeding 0.1. Harmonics at shorter wavelengths were already known, but we show that there are additional resonances in the far-infrared 20 - 50 μm wavelength range in MIM structures designed to have LWIR fundamental resonances. These new resonances are consistent with the model if far-IR dispersion features in the index spectrum are considered. LWIR fundamental absorptions are experimentally shown to be optimized for a ratio t/l of 0.1 to 0.3 for SiO2- and AlN-based MIM absorbers, respectively, with TiO2-based MIM optimized at an intermediate ratio.


2011 ◽  
Author(s):  
Terrance O'Regan ◽  
Matthew Chin ◽  
Cheng Tan ◽  
Anthony Birdwell

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Mikhail K. Khodzitsky ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Anton D. Zaitsev ◽  
Elena S. Makarova ◽  
...  

The terahertz frequency range is promising for solving various practically important problems. However, for the terahertz technology development, there is still a problem with the lack of affordable and effective terahertz devices. One of the main tasks is to search for new materials with high sensitivity to terahertz radiation at room temperature. Bi1−xSbx thin films with various Sb concentrations seem to be suitable for such conditions. In this paper, the terahertz radiation influence onto the properties of thermoelectric Bi1−xSbx 200 nm films was investigated for the first time. The films were obtained by means of thermal evaporation in vacuum. They were affected by terahertz radiation at the frequency of 0.14 terahertz (THz) in the presence of thermal gradient, electric field or without these influences. The temporal dependencies of photoconductivity, temperature difference and voltage drop were measured. The obtained data demonstrate the possibility for practical use of Bi1−xSbx thin films for THz radiation detection. The results of our work promote the usage of these thermoelectric materials, as well as THz radiation detectors based on them, in various areas of modern THz photonics.


2021 ◽  
Vol 11 (4) ◽  
pp. 1544
Author(s):  
Meguya Ryu ◽  
Yoshiaki Nishijima ◽  
Shinya Morimoto ◽  
Naoki To ◽  
Tomoki Hashizume ◽  
...  

The four polarisation method is adopted for measurement of molecular orientation in dielectric nanolayers of metal-insulator-metal (MIM) metamaterials composed of gold nanodisks on polyimide and gold films. Hyperspectral mapping at the chemical finger printing spectral range of 4–20 μμm was carried out for MIM patterns of 1–2.5 μμm period (sub-wavelength). Overlay images taken at 0,π4,π2,3π4 orientation angles and subsequent baseline compensation are shown to be critically important for the interpretation of chemical mapping results and reduction of spurious artefacts. Light field enhancement in the 60-nm-thick polyimide (I in MIM) was responsible for strong absorption at the characteristic polyimide bands. Strong absorbance A at narrow IR bands can be used as a thermal emitter (emittance E=1−R), where R is the reflectance and A=1−R−T, where for optically thick samples the transmittance is T=0.


2021 ◽  
Vol 4 (3) ◽  
pp. 2470-2475 ◽  
Author(s):  
Ayendra Weerakkody ◽  
Amina Belkadi ◽  
Garret Moddel

2019 ◽  
Vol 9 (4) ◽  
pp. 644
Author(s):  
Xue-Shi Li ◽  
Naixing Feng ◽  
Yuan-Mei Xu ◽  
Liang-Lun Cheng ◽  
Qing Liu

A tunable demultiplexer with three output channels infiltrated by liquid crystal (LC) is presented, which is based on a metal-insulator-metal (MIM) waveguide. The operating frequencies of the three output channels can be tuned simultaneously at will by changing the external bias electric field applied to the LC. By analyzing the Fabry-Pérot (FP) resonance modes of the finite-length MIM waveguide both theoretically and numerically, the locations of the three channels are delicately determined to achieve the best demultiplexing effects. Terahertz (THz) signals input from the main channel can be demultiplexed by channels 1, 2 and 3 at 0.7135 THz, 1.068 THz and 1.429 THz, respectively. By applying an external electric field to alter the tilt angle of the infiltrating LC material, the operating frequencies of channels 1, 2 and 3 can be relatively shifted up to 12.3%, 9.6% and 9.7%, respectively. The designed demultiplexer can not only provide a flexible means to demultiplex signals but also tune operating bands of output channels at the same time.


2020 ◽  
Vol 22 (3) ◽  
pp. 035003
Author(s):  
Li Li ◽  
Daping Zhao ◽  
Jiang Fan ◽  
Rong Huang ◽  
Wei Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document