scholarly journals Strength and Durability Characteristics of Steel Fibre Reinforced Concrete with Mineral Admixtures

The present investigation is carried out to study the strength and durability characteristics of steel fibre reinforced concrete, by replacing Ordinary Portland cement with Fly Ash, Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin. In this study, cement is replaced by 30% and 40% with Fly Ash, GGBS and Metakaolin for M30 and M35 grades of concrete. Steel fibres @ 1% by weight of binder is used in all the mixes. Strength characteristics like compressive strength and split tensile strength are tested at 7 days and 28 days age. Additionally, durability tests such as water absorption and Sorptivity tests are conducted after 28days curing. The test results have shown that 30% replacement is optimum for strength criteria. And when metakaolin is used with fly ash, durability properties were improved and workability reduced.

Most commonly used composite building material in construction industry is Concrete due to ease of construction and its properties like compressive strength and durability. The basic ingredient of Concrete having adhesive nature is Ordinary Portland Cement(OPC). OPC is being replaced with Fly Ash and Metakaolin as these mineral admixtures possess pozzolanic properties which credit for strength gain and cost reduction in concreting. In this investigation, OPC is replaced up to 40% with Fly Ash and Metakaolin for M35 grade of Fibre Reinforced Concrete(FRC). Natural sand is replaced completely with Manufactured sand (M-sand). Steel fibres @ 1% of binder are used. Mechanical properties like compressive strength and split tensile strength at 7 days and 28 days age are tested. Additionally durability tests like water absorption and sorptivity after 28days curing are conducted. The test results indicated that 30% replacement of OPC was optimum for strength criteria, workability of Concrete was decreased with increase in replacement of OPC with Fly Ash and Metakaolin together.


2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


2017 ◽  
Vol 23 (6) ◽  
pp. 806-813 ◽  
Author(s):  
Inmaculada MARTÍNEZ-PÉREZ ◽  
Juozas VALIVONIS ◽  
Remigijus ŠALNA ◽  
Alfonso COBO-ESCAMILLA

The building of structures from steel fibre reinforced concrete (SFRC) in the external and conventional rein­forced concrete (RC) in the internal layer represents an economical alternative of structures effectively using SFRC. The paper presents test results of flexural behaviour of layered beams with SFRC external layers and RC internal layer. The behaviour of these beams is compared to test results of SFRC and conventional RC beams. The test results show, that the flexural load capacity for all series of beams is nearly similar, but the deflections of layered beams are less comparing to monolithic ones. It also been shown that the equations indicated in the Eurocode 2 can be used to design the flexural reinforcement in layered SFRC beams.


Author(s):  
Fangyuan Li ◽  
Yunxuan Cui ◽  
Chengyuan Cao ◽  
Peifeng Wu

Directionally distributed steel fibre-reinforced concrete has been proposed as a novel concrete because of its high tensile strength and crack resistance in specific directions. Based on the existing studies of the effect of the fibre direction on the mechanical properties of fibre-reinforced concrete, the authors in this paper performed further studies of the mechanical properties of directionally distributed steel fibre-reinforced concrete by conducting split tensile and bending tests. The split tensile strength of the directionally distributed fibre-reinforced concrete clearly exhibited anisotropy. The split tensile strength perpendicular to the fibre direction was much higher than that parallel to the fibre direction. The split tensile strength perpendicular to the fibre direction was almost twice the tensile strength of plain concrete. The flexural performance of directionally distributed fibre-reinforced concrete in the fibre direction significantly improved compared to that of randomly distributed fibre-reinforced concrete. Specifically, the flexural strength increased by as much as 97%. Gravity resulted in a deviation in the tensile properties of concrete prepared by manually and directionally placing fibres in a layered casting process. The test results can be utilised in subsequent concrete designs. The conclusions reached in this paper provide comprehensive mechanical design parameters for the application of directionally distributed fibre-reinforced concrete.


2016 ◽  
Vol 56 (4) ◽  
pp. 258-264 ◽  
Author(s):  
Vadims Goremikins ◽  
Lukas Blesak ◽  
Josef Novak ◽  
Frantisek Wald

<p>Generally speaking, adding a certain amount of steel fibres to a concrete mixture improves its mechanical properties. Currently, a lack of information considering tensile and post cracking behaviour of FRC at elevated temperatures is an issue to be faced. An experimental study of steel fibre reinforced concrete, also containing polymer fibres (FRC), subjected to high temperature is presented herein. Compressive strength, split tensile strength and ultimate bending strength were evaluated. Specimens were heated by the use of ceramic heaters and repacked for testing consequently. A finite-element based model was developed to predict the temperature distribution inside a specimen during both the heating and the cooling process.</p>


The production of Ordinary Portland Cement (OPC) is increasing year by year world over. Further, the production of every tonne of OPC generates one tonne of green house gases, (CO2 ) which results in Global Warming. Usage of OPC is more in construction industry as it is a major ingredient in Concrete. As the usage of Concrete is increasing year by year, more and more is the OPC production and hence the environment is getting polluted; added to this undesirable scenario, the natural resources like lime stone used to manufacture cement and river sand are getting depleted year by year. In order to prevent the usage of large amounts of OPC in Concrete, mineral admixtures like Ground Granulated Blast furnace Slag (GGBS), Fly Ash and Metakaolin which are pozzolanic and cementitious in nature are adopted to replace certain percentages of OPC. Manufactured Sand (M-sand) is adopted to replace river sand. Experimental investigation is conducted on fiber reinforced concrete with steel fibers @1% of weight of binder by casting requisite number of cubes and cylinders of concrete of grade M25; in these mixes OPC is replaced with GGBS, Fly Ash and Metakaolin up to 45%. Mechanical properties are determined by conducting compressive strength and split tensile strength tests; additionally some of the durability properties are established by conducting Water absorption and Sorptivity tests. Test results are comparable between controlled concrete and innovative concrete of present investigation.


Author(s):  
Vadims Goremikins ◽  
Lukas Blesak ◽  
Josef Novak ◽  
Frantisek Wald

Addition of steel fibres improves properties of concrete. The lack of information considering tensile and post cracking behaviour of SFRC at elevated temperatures is an obstacle on the wide use of this composite material. This work presents an experimental study of steel fibre reinforced concrete subjected to high temperature. Compressive strength, split tensile strength and ultimate bending strength were evaluated. The specimens were heated by ceramic heaters and then repacked for testing.


10.14311/1823 ◽  
2013 ◽  
Vol 53 (4) ◽  
Author(s):  
Jaroslav Beňo ◽  
Matouš Hilar

The use of precast steel fibre reinforced concrete (SFRC) for tunnel segments is a relatively new application of this material. It was first applied in Italy in the 1980s. However, it did not begin to be widely applied until after 2000. The Czech Technical University in Prague (CTU), together with Metrostav, carried out a study to evaluate the use of this new technology for tunnels in the Czech Republic. The first tests were carried out on small samples (beams and cubes) produced from SFRC to find an appropriate type and an appropriate dosage of fibres. The tests were also used to verify other factors affecting the final product (e.g. production technology). Afterwards, SFRC segments were produced and then tested at the Klokner Institute of CTU. Successful test results confirmed that it was possible to use SFRC segments for Czech transport tunnels. Consequently a 15 m-long section of segmental lining generated from SFRC without steel rebars was constructed as part of line A of the Prague metro.


Sign in / Sign up

Export Citation Format

Share Document