scholarly journals Design of Circular Patch Antenna with Coplanar Waveguide Feed for LTE Application

In this paper, a circular patch antenna with Coplanar Waveguide (CPW) feed for LTE application is proposed. The proposed antenna design exhibits a decent impedance matching inside the LTE Bands 2.6 GHz. The planar monopole antenna with coplanar waveguide (CPW) feed has been considered here. It has greater advantage over microstrip compose feed lines, low scattering, low radiation spillage, the capacity to successfully control the trademark impedance, and the simplicity of mix. Rogers RT/duroid 5880 is used as substrate having a dielectric constant of 2.2 with a thickness of 1.6 mm and the conducting surface as copper. The proposed antenna obtains a narrow bandwidth in the frequency range of 2.6 GHz. It is suitable for LTE application because of its compact size and less cost to fabrication. The gain and efficiency of this antenna is good. The antenna is designed with the help of High Frequency Structure Simulator (HFSS) software.

Author(s):  
Rakesh N

Abstract: The evolution of wireless communication system has led path for innovative antenna design specifically in wideband antenna for WiMax application. In this paper design and simulation of microstrip wideband circular patch antenna array operating between 2GHz to 4Ghz is presented. The circular patch antenna is designed to operate at 3GHz line feed and the ground is itched to achieve required wideband characteristics. The simulation is carried out in EM Flow solver, High Frequency Structure Simulator software. For a single patch antenna, the return loss, lesser than -10dB throughout the bandwidth. Later an antenna array is operating between 2GHz to 4GHz frequency is designed and simulated. The return loss is lesser than -12dBi throughout the band and a peak gain is 14.7dBi. Keywords: Microstrip Patch Antenna (MPA), High Frequency Structure Simulator (HFSS).


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4884
Author(s):  
Songtao Xue ◽  
Kang Jiang ◽  
Shuai Guan ◽  
Liyu Xie ◽  
Guochun Wan ◽  
...  

This paper presents a passive wireless long-range displacement sensor that is based on the circular patch antenna, and the detecting range of the sensor can be customized. The sensor consists of a chipped circular antenna with two opened rectangular windows, a substrate, and a ground plate with a sloping channel. No bonding between the antenna and the ground plate allows for the chipped antenna to slide along the sloping channel. The channel will drive the current flow on the plate once the chip is activated, increasing the effective electrical length and, consequently, decreasing the resonant frequency of the circular antenna. The sensing mechanism equates the measuring displacement to the relative movement of the antenna with respect to the ground that achieves the measurement of long-range displacement and, thus, the proposed sensor can avoid stress damage to the antenna due to excessive deformation. Three different range sensors were simulated in the the Ansoft high frequency structure simulator (HFSS). The results show that the resonance frequency of the antenna has a linear relationship with the varying chute depth beneath the chip. Three sensors were fabricated, and the experimental results also validated that the sensitivity of the sensor can be adjusted.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 461 ◽  
Author(s):  
Pronami Bora ◽  
Mona Mudaliar ◽  
Yuvraj Baburao Dhanade ◽  
K Sreelakshm ◽  
Chayan Paul ◽  
...  

A metamaterial extended microstrip rectangular patch antenna with CSRR loading and defected ground structures(DGS) is proposed for wideband applications with band notching at the frequencies of KU band. The proposed antenna is designed by embedding it on Rogers RT/Duroid 5880 substrate with good impedance matching of 50 Ω at the feedline.The high frequency structure simulator (HFSS) is used to design and simulate the antennas parameters in the operating band. Measurement results confirm the antenna characteristics as predicted in the simulation with a slight shift in frequencies.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Puneet Khanna ◽  
Amar Sharma ◽  
Kshitij Shinghal ◽  
Arun Kumar

A coplanar waveguide- (CPW-) fed compact wideband defected structure shaped microstrip antenna is proposed for wireless applications. Defected structure is produced by cutting theUshape antenna in the form of two-sided T shape. The proposed antenna consists of two-sidedTshape strip as compared to usual monopole patch antenna for minimizing the height of the antenna. The large space around the radiator is fully utilized as the ground is on the same plane as of radiator. Microstrip line feed is used to excite the proposed antenna placed on an FR4 substrate (dielectric constantεr=4.4). The antenna is practically fabricated and simulated. Simulated results of the proposed antenna have been obtained by using Ansoft High-Frequency Structure Simulator (HFSS) software. These results are compared with measured results by using network analyzer. Measured result shows good agreement with the simulated results. It is observed that the proposed antenna shows a wideband from 2.96 GHz to 7.95 GHz with three bands atf1=3.23 GHz,f2=4.93 GHz, andf3=7.04 GHz.


This proposes a new diminutive octa polarization reconfigurable circular patch antenna design. This new antenna can operate in eight different polarizing states (6 different angles of linear polarization and 2 circular polarization states) with the help of a reconfigurable probe feed network. The antenna comprises of a circular layer of radiation with four equally spaced slits at the boundary of the circular patch to obtain size reduction. The bias voltages of six pairs of PIN diodes are interval between each state. A 3 dB hybrid coupler and a RF switch are used to produce reconfiguration between circular polarization states of the right and left hand. The proposed antenna was designed using CST microwave studio, fabricated as a prototype model and tested which produces desired values for various parameters of antenna including compact size. The designed antenna operates within 2.4-2.5 GHz frequencies suitable for wireless applications


2019 ◽  
Vol 55 (4) ◽  
pp. 169-170 ◽  
Author(s):  
Shiyan Wang ◽  
Lei Zhu ◽  
Jianpeng Wang ◽  
Wen Wu

2013 ◽  
Vol 6 (5) ◽  
pp. 497-503 ◽  
Author(s):  
Kirti Vyas ◽  
Garima Sanyal ◽  
Arun Kumar Sharma ◽  
Pramod Kumar Singhal

The present paper reports the gain enhancement over a wideband (12–15 GHz) in a coplanar waveguide (CPW)-fed circular patch antenna with circular defected ground structure (DGS). Two compact coplanar circular antennas have been designed and fabricated with and without DGS of same volume 18 × 20 × 1.6 mm3, built over FR4-epoxy substrate (εr = 4.4). Gain enhancement has been achieved by optimizing the current distribution with suitable DGS. For this purpose, structural designs have been optimized by parametric simulations in HFSS and CST MWS. Both the antennas can perform well in variety of wireless communication including WLAN IEEE 802.11 g/a (5.15–5.35 GHz and 5.725–5.825 GHz) and X-band applications including short range, tracking, missile guidance, and radar communication that ranges roughly from 8.29 to 11.4 GHz. The measured experimental results show that impedance bandwidth (S11 < −10 dB) of antenna with DGS is 100%. The antenna with DGS offers gain improvement by 2.7 dB for 13 GHz and 7 dB for 14 GHz. The performance of antenna with DGS is compared to conventional CPW-fed circular patch antenna (without DGS) in terms of reflection coefficient, radiation characteristics, and gain.


2020 ◽  
Vol 35 (9) ◽  
pp. 1030-1036
Author(s):  
Pronami Bora ◽  
Pokkunuri Pardhasaradhi ◽  
Boddapati Madhav

A non-planar electromagnetic band gap (EBG) structured antenna is proposed in this paper for wireless communication applications. The proposed design consists of coplanar waveguide (CPW) fed square patch antenna embedded with triangular EBG backing on FR-4 substrate material for 2.4 GHz (Wi-Fi, LTE) and 5.2 GHz (WLAN) applications. Gain is improved from 2.8 dB to 13.9 dB by adding EBG structure in the proposed antenna and the parametric analysis is done for optimizing the antenna performance characteristics. The proposed antenna provides a maximum efficiency of 82.5% in the resonating frequencies. The prototyped antenna is having good correlation with the simulation results obtained from Finite Element Method (FEM) based Anyss-HFSS. High Frequency Structure Simulator is used to analyze the antenna parameters and the simulated and measured results are correlating well with each other with a slight change in frequencies.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yao Chen ◽  
Longfang Ye ◽  
Jianliang Zhuo ◽  
Yanhui Liu ◽  
Liang Zhang ◽  
...  

In this paper, a compact frequency reconfigurable circular patch antenna with an arc-shaped slot loaded in the ground layer is proposed for multiband wireless communication applications. By controlling the ON/OFF states of the five PIN diodes mounted on the arc-shaped slot, the effective length of the arc-shaped slot and the effective length of antennas current are changed, and accordingly six-frequency band reconfiguration can be achieved. The simulated and measured results show that the antenna can operate from 1.82 GHz to 2.46 GHz, which is located in DCS1800 (1.71–1.88 GHz), UMTS (2.11–2.20 GHz), WiBro (2.3–2.4 GHz), and Bluetooth (2.4–2.48 GHz) frequency bands and so forth. Compared to the common rectangular slot circular patch antenna, the proposed arc-shaped slot circular patch antenna not only has a better rotational symmetry with the circular patch and substrate but also has more compact size. For the given operating frequency at 1.82 GHz, over 55% area reduction is achieved in this design with respect to the common design with rectangular slot. Since the promising frequency reconfiguration, this antenna may have potential applications in modern multiband and multifunctional mobile communication systems.


Sign in / Sign up

Export Citation Format

Share Document