scholarly journals A Two Phase Mathematical Model of Fluid Flow through Bell Shaped Stenotic Artery

The present research paper concerns with a two phase fluid flow, consists an acentric plasma layer region free from red cells and a central core region represented by Hershel – Bulkley fluid through a bell shaped stenosed artery. Mathematical expressions for characteristics of blood flow namely core velocity (uc ), peripheral velocity ( up ), shear stress at wall ( ) and total volumetric fluid flow rate (Q) have been estimated and depicted graphically . The effect of shape parameter peripheral layer viscosity, on these characteristics has been depicted with graphs. It has been noticed that the fluid flow rate (Q) and shear stress at wall ( ) decreases as the increases of peripheral layer viscosity.

2016 ◽  
Vol 12 (2) ◽  
pp. 5938-5944
Author(s):  
Surendra Kumar

When blood flow through artery, the two-phase nature of blood as a suspension becomes  important as the diameter of the red blood cell (RBC) becomes comparable to the tube diameter. The aim of the present study  is to analyzed the effect of magnetic field on the plug flow region, shear stress in the core and plasma layer in two-fluid flow of blood through stenosed artery. Besides magnetic field, the effect of Womersley parameter, thickness of stenosis and width of plasma layer are also discussed. Generated data are analyzed and discussed through graphs.


2013 ◽  
Vol 10 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Amit Medhavi

The present study concerns with the effects of the hematocrit and the peripheral layer on blood flow characteristics due to the presence of a bell shaped stenosis in arteries. To account for the hematocrit and the peripheral layer, the flowing blood has been represented by a two-layered macroscopic two-phase (i.e., a suspension of red cells in plasma) model. The expressions for the flow characteristics, namely, the velocity profiles, the flow rate, the impedance, the wall shear stress in the stenotic region and the shear stress at the stenosis throat have been derived. The quantitative effects of the hematocrit and the peripheral layer on these flow characteristics have been displayed graphically and discussed briefly.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

1999 ◽  
Author(s):  
Daniel P. Nicolella ◽  
Eugene Sprague ◽  
Lynda Bonewald

Abstract It has been shown that bone cells are more responsive to fluid flow induced shear stress as compared to applied substrate strain (Owan, et al., 1997, Smalt, et al., 1997). Using novel micromechanical analysis techniques, we have measured individual cell strains resulting from 10 minutes of continuous fluid flow at a flow rate that produces a shear stress of 15 dyne/cm2. Individual cell strains varied widely from less than 1.0% to over 25% strain within the same group of cells. The increased sensitivity of cells to fluid flow induced shear stress may be attributed to much greater cellular deformations resulting from fluid flow induced sheer stress.


1956 ◽  
Vol 23 (2) ◽  
pp. 269-272
Author(s):  
L. F. Welanetz

Abstract An analysis is made of the suction holding power of a device in which a fluid flows radially outward from a central hole between two parallel circular plates. The holding power and the fluid flow rate are determined as functions of the plate separation. The effect of changing the proportions of the device is investigated. Experiments were made to check the analysis.


2018 ◽  
Vol 12 (4) ◽  
pp. 294-300 ◽  
Author(s):  
Santhosh K. Venkata ◽  
Bhagya R. Navada

Abstract In this paper, implementation of soft sensing technique for measurement of fluid flow rate is reported. The objective of the paper is to design an estimator to physically measure the flow in pipe by analysing the vibration on the walls of the pipe. Commonly used head type flow meter causes obstruction to the flow and measurement would depend on the placement of these sensors. In the proposed technique vibration sensor is bonded on the pipe of liquid flow. It is observed that vibration in the pipe varies with the control action of stem. Single axis accelerometer is used to acquire vibration signal from pipe, signal is passed from the sensor to the system for processing. Basic techniques like filtering, amplification, and Fourier transform are used to process the signal. The obtained transform is trained using neural network algorithm to estimate the fluid flow rate. Artificial neural network is designed using back propagation with artificial bee colony algorithm. Designed estimator after being incorporated in practical setup is subjected to test and the result obtained shows successful estimation of flow rate with the root mean square percentage error of 0.667.


2021 ◽  
pp. 1-10
Author(s):  
Yongsheng Liu ◽  
Xing Qin ◽  
Yuchen Sun ◽  
Zijun Dou ◽  
Jiansong Zhang ◽  
...  

Abstract Aiming at the oscillation drag reduction tool that improves the extension limit of coiled tubing downhole operations, the fluid hammer equation of the oscillation drag reducer is established based on the fluid hammer effect. The fluid hammer equation is solved by the asymptotic method, and the distribution of fluid pressure and flow velocity in coiled tubing with oscillation drag reducers is obtained. At the same time, the axial force and radial force of the coiled tubing caused by the fluid hammer oscillator are calculated according to the momentum theorem. The radial force will change the normal contact force of the coiled tubing which has a great influence on frictional drag. The results show that the fluid flow rate and pressure decrease stepwise from the oscillator position to the wellhead position, and the fluid flow rate and pressure will change abruptly during each valve opening and closing time. When the fluid passes through the oscillator, the unit mass fluid will generate an instantaneous axial tension due to the change in the fluid velocity, thereby converting the static friction into dynamic friction, which is conducive to the extend limit of coiled tubing.


Author(s):  
Olutosin Olufisayo Ilori ◽  
Dare A. Adetan ◽  
Lasisi E. Umoru

The study determined the effect of cutting parameters on the surface residual stress of face-milled pearlitic ductile iron with a view to enhancing surface integrity of machined parts in the manufacturing industries. The pearlitic ductile iron used for this study was prepared and four cutting parameters were considered. The results obtained showed that the average surface residual stress of the machined surfaces was tensile and increased significantly with increase in depth of cut. Feed rate and cutting speed exhibited some effect, though not statistically significant, on average surface residual stress. The average residual stress was found to decrease significantly and drastically from 605.39 MPa to 101.72 MPa as cutting fluid flow rate increased from 0 ?/min to 4 ?/min. The study concluded that out of all four cutting parameters investigated, the cutting fluid flow rate has most considerable influence on the surface residual stress of the machined pearlitic ductile iron.


Sign in / Sign up

Export Citation Format

Share Document