scholarly journals Performance Enhancement of a Single-Stage CUK Based Three Phase Photovoltaic Inverter using Anfis Controller

A modular structured and high efficient photovoltaic (PV) system is essential in today’s scenario. The single stage Cuk based inverter has continuous input and output current, and hence, makes it suitable for applying MPPT techniques when used for PV applications. The PI, PID, and fuzzy controllers could be applied for PV inverter. The PI controller decreases the error in steady state, and at the same time, it also decreases the stability of the system. The PID controller involves large time delay process. The random nature in fuzzy controller may not lead to optimum results. Hence, this paper proposes a controller based on Adaptive Neuro-Fuzzy Inference System (ANFIS) for a three phase PV inverter based on Cuk converter. The effectiveness of proposed system is verified using MATLAB/SIMULINK, and the results are presented. The performance of proposed ANFIS controller for Cuk based three phase inverter is compared with conventional PI controller. The proposed system has several merits like increased performance, accuracy, and efficiency.

2019 ◽  
Vol 8 (1) ◽  
pp. 1-9
Author(s):  
Swetapadma Panigrahi ◽  
Amarnath Thakur

In this paper a control scheme for three phase seven level cascaded H-bridge inverter for grid tied PV system is presented. As power generation from PV depends on varing environmental conditions, for extractraction of maximum power from PV array, fuzzy MPPT controller is incorporated with each PV array. It gives fast and accurate response. To maintain the grid current sinusoidal under varying conditions, a digital PI controller scheme is adopted. A MATLAB/Simulink model is developed for this purpose and results are presented. At last THD analysis is carried out in order to validate the performance of the overall system. As discussed, with this control strategy the balanced grid current is obtained keeping THD values with in the specified range of IEEE-519 standard.


2019 ◽  
Vol 20 (1) ◽  
pp. 140-157
Author(s):  
N Hemalatha ◽  
Seyezhai Ramalingam

A grid-tied, single stage, three phase, PV system provides higher efficiency than a two-stage PV system. This paper presents a three-phase, single stage, grid-connected PV system with MPPT and reactive power injection capability into the grid using modified capacitor assisted extended boost quasi Z-source inverter (MCAEB q-ZSI) as the grid-tied PV inverter. The adaptability of the inverter for irradiance changes and the boost factor control with its shoot-through duty ratio adjustment made it highly recommended for the grid system. The shoot-through control technique like maximum constant boost control with a third harmonic injection enhances the performance of the inverter by reducing the low order ripples and voltage stress. The fuzzy voltage controller is proposed with the capacitor linearization algorithm to regulate the DC-link voltage. The current approach uses a fuzzy controller to control the real and the reactive power injection into the grid. The performance evaluation of the fuzzy and PI grid controller is carried out for the constant irradiance condition and from the investigation, parameters like boost factor (B), the shoot-through duty ratio(Ds), real power (P), reactive power (Q),  power factor and harmonics in the current injection are determined. A laboratory setup of the PV powered grid system is implemented, tested and validated with the simulation results. ABSTRAK: Dalam sistem fotovoltaik (PV) yang bersambung dengan satu peringkat, satu sistem elektronik kuasa yang mempunyai keuntungan dan kecekapan yang tinggi diperlukan untuk menginterupasi dengan utiliti tersebut. Dalam makalah ini, kapasitor yang diubah suai dibantu oleh pemacu kuadratik Z-source yang dilanjutkan (MCAEB q-ZSI) bertindak sebagai unit interfacing antara PV dan grid. Penyesuaian penyongsang untuk perubahan sinaran dan kawalan faktor rangsangan dengan pelarasan nisbah tugas menembak membuatnya sangat disyorkan untuk sistem grid. Teknik kawalan menembak seperti kawalan rangsangan berterusan maksimum dengan suntikan harmonik ketiga meningkatkan prestasi penyongsang dengan mengurangkan aruhan pesanan rendah dan tekanan voltan. Pendekatan semasa menggunakan pengawal kabur untuk mengawal suntikan kuasa sebenar dan reaktif ke grid. Penilaian prestasi pengawal grid fuzzy dan PI dilakukan untuk keadaan iradiasi malar dan dari penyiasatan, parameter seperti faktor rangsangan (B), nisbah tugas menembak (Ds), kuasa nyata (P), kuasa reaktif Q), faktor kuasa dan harmonik dalam suntikan semasa ditentukan.   


Author(s):  
Hitendra Singh Thakur ◽  
Ram Narayan Patel

For the three phase power electronic and drive applications, vector control or the synchronous reference frame (SRF) based control concept is well accepted and settled amongst the research communities. Although the SRF concept has gained popularity and appreciation in developing the three phase controllers, still the concept has not reached the same level in case of a single phase system. The work presented in this paper is mainly concerned to the design of a hybrid Artificial Neural Network and Fuzzy Logic based controller for a single phase stand-alone photo-voltaic (PV) power system. The adaptive neuro fuzzy inference system (ANFIS) controller proposed in this paper is chiefly meant for improving the transient and steady state responses; for minimizing the distorting effect of the low order load current harmonics encountered particularly in case of switching the drive based inductive loads and to help maintain the inverter output voltage constant under different loading circumstances. The result obtained through simulation work, shows the effectiveness of the proposed controller as compared with the previously established research works.


Author(s):  
Ayman Alhejji

The article introduces a new solution approach to grid-connected single-stage three-phase PV inverter whereby a dc-link voltage can successfully achieve the desired performance. As a single-stage, the variable output of perturb and observe maximum power point tracking (P&O based-MPPT) is fully utilized as dc-link voltage reference in inverter control scheme. As a result, it is challenging for the dc-link voltage to preserve energy balance by tracking its variable dc-link voltage reference under unpredictable environmental changes. To overcome this challenge, an adaptive reference proportional-integral (ARPI) controller, self-tuning, is designed and implemented to compel the dc-link voltage tracking its voltage reference to be equal as closely as possible; hence, the capability of the dc-link under abnormal events substantially guarantees the best energy balance and transient performance enhancement. To verify the validity of the method, simulation results for multiple events scenarios on 250 KW single-stage grid-connected PV systems show the effectiveness of the ARPI controller compared with PI controller.


2013 ◽  
Vol 16 (4) ◽  
pp. 19-32
Author(s):  
Dzung Quoc Pham ◽  
Vu Truong Dan Nguyen ◽  
Khoa Dinh Le ◽  
Anh Bao Nguyen ◽  
Diep Chi Le

Single-stage topology and the maximum power point tracking (MPPT) algorithm have advantages such as simple configuration and high efficiency in grid-connected photovoltaic (PV) systems. In conventional systems, current and voltage sensors of PV system are normally used for MPPT. This paper presents a modified control algorithm for the single-stage three-phase grid-connected PV system without PV current sensor with a variable step MPP-tracker. This algorithm is not derived from complex state equations and is not dependent on any circuit parameters. It simply calculates the output power of the inverter to replace the input power of the PV systems in the MPPT algorithm. The modified algorithm is simulated by using Matlab/Simulink software and implemented in the experimental prototype. With the single-stage configuration and PV current sensorless method, the prototype is suitable for lowcost high efficient implementation in the practice.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 998
Author(s):  
Roozbeh Sadeghian Broujeny ◽  
Kurosh Madani ◽  
Abdennasser Chebira ◽  
Veronique Amarger ◽  
Laurent Hurtard

Most already advanced developed heating control systems remain either in a prototype state (because of their relatively complex implementation requirements) or require very specific technologies not implementable in most existing buildings. On the other hand, the above-mentioned analysis has also pointed out that most smart building energy management systems deploy quite very basic heating control strategies limited to quite simplistic predesigned use-case scenarios. In the present paper, we propose a heating control strategy taking advantage of the overall identification of the living space by taking advantage of the consideration of the living space users’ presence as additional thermal sources. To handle this, an adaptive controller for the operation of heating transmitters on the basis of soft computing techniques by taking into account the diverse range of occupants in the heating chain is introduced. The strategy of the controller is constructed on a basis of the modeling heating dynamics of living spaces by considering occupants as an additional heating source. The proposed approach for modeling the heating dynamics of living spaces is on the basis of time series prediction by a multilayer perceptron neural network, and the controlling strategy regarding the heating controller takes advantage of a Fuzzy Inference System with the Takagi-Sugeno model. The proposed approach has been implemented for facing the dynamic heating conduct of a real five-floor building’s living spaces located at Senart Campus of University Paris-Est Créteil, taking into account the occupants of spaces in the control chain. The obtained results assessing the efficiency and adaptive functionality of the investigated fuzzy controller designed model-based approach are reported and discussed.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1618
Author(s):  
Mohanasundaram Anthony ◽  
Valsalal Prasad ◽  
Raju Kannadasan ◽  
Saad Mekhilef ◽  
Mohammed H. Alsharif ◽  
...  

This work describes an optimum utilization of hybrid photovoltaic (PV)—wind energy for residential buildings on its occurrence with a newly proposed autonomous fuzzy controller (AuFuCo). In this regard, a virtual model of a vertical axis wind turbine (VAWT) and PV system (each rated at 2 kW) are constructed in a MATLAB Simulink environment. An autonomous fuzzy inference system is applied to model primary units of the controller such as load forecasting (LF), grid power selection (GPS) switch, renewable energy management system (REMS), and fuzzy load switch (FLS). The residential load consumption pattern (4 kW of connected load) is allowed to consume energy from the grid and hybrid resources located at the demand side and classified as base, priority, short-term, and schedulable loads. The simulation results identify that the proposed controller manages the demand side management (DSM) techniques for peak load shifting and valley filling effectively with renewable sources. Also, energy costs and savings for the home environment are evaluated using the proposed controller. Further, the energy conservation technique is studied by increasing renewable conversion efficiency (18% to 23% for PV and 35% to 45% for the VAWT model), which reduces the spending of 0.5% in energy cost and a 1.25% reduction in grid demand for 24-time units/day of the simulation study. Additionally, the proposed controller is adapted for computing energy cost (considering the same load pattern) for future demand, and it is exposed that the PV-wind energy cost reduced to 6.9% but 30.6% increase of coal energy cost due to its rise in the Indian energy market by 2030.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 51
Author(s):  
Jozef Živčák ◽  
Michal Kelemen ◽  
Ivan Virgala ◽  
Peter Marcinko ◽  
Peter Tuleja ◽  
...  

COVID-19 was first identified in December 2019 in Wuhan, China. It mainly affects the respiratory system and can lead to the death of the patient. The motivation for this study was the current pandemic situation and general deficiency of emergency mechanical ventilators. The paper presents the development of a mechanical ventilator and its control algorithm. The main feature of the developed mechanical ventilator is AmbuBag compressed by a pneumatic actuator. The control algorithm is based on an adaptive neuro-fuzzy inference system (ANFIS), which integrates both neural networks and fuzzy logic principles. Mechanical design and hardware design are presented in the paper. Subsequently, there is a description of the process of data collecting and training of the fuzzy controller. The paper also presents a simulation model for verification of the designed control approach. The experimental results provide the verification of the designed control system. The novelty of the paper is, on the one hand, an implementation of the ANFIS controller for AmbuBag pressure control, with a description of training process. On other hand, the paper presents a novel design of a mechanical ventilator, with a detailed description of the hardware and control system. The last contribution of the paper lies in the mathematical and experimental description of AmbuBag for ventilation purposes.


2021 ◽  
Vol 41 (1) ◽  
pp. 1657-1675
Author(s):  
Luis Rodriguez ◽  
Oscar Castillo ◽  
Mario Garcia ◽  
Jose Soria

The main goal of this paper is to outline a new optimization algorithm based on String Theory, which is a relative new area of physics. The String Theory Algorithm (STA) is a nature-inspired meta-heuristic, which is based on studies about a theory stating that all the elemental particles that exist in the universe are strings, and the vibrations of these strings create all particles existing today. The newly proposed algorithm uses equations based on the laws of physics that are stated in String Theory. The main contribution in this proposed method is the new techniques that are devised in order to generate potential solutions in optimization problems, and we are presenting a detailed explanation and the equations involved in the new algorithm in order to solve optimization problems. In this case, we evaluate this new proposed meta-heuristic with three cases. The first case is of 13 traditional benchmark mathematical functions and a comparison with three different meta-heuristics is presented. The three algorithms are: Flower Pollination Algorithm (FPA), Firefly Algorithm (FA) and Grey Wolf Optimizer (GWO). The second case is the optimization of benchmark functions of the CEC 2015 Competition and we are also presenting a statistical comparison of these results with respect to FA and GWO. In addition, we are presenting a third case, which is the optimization of a fuzzy inference system (FIS), specifically finding the optimal design of a fuzzy controller, where the main goal is to optimize the membership functions of the FIS. It is important to mention that we used these study cases in order to analyze the proposed meta-heuristic with: basic problems, complex problems and control problems. Finally, we present the performance, results and conclusions of the new proposed meta-heuristic.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2899 ◽  
Author(s):  
Alexis B. Rey-Boué ◽  
N. F. Guerrero-Rodríguez ◽  
Johannes Stöckl ◽  
Thomas I. Strasser

This article deals with the vector control in dq axes of a three-phase grid-connected photovoltaic system with single-stage topology and low-voltage-ride-through capability. The photovoltaic generator is built using an array of several series-parallel Suntech PV modules and is modeled as a Lookup Table (two-dimensional; 2-D). The requirements adopted when grid voltage sags occur are based in both the IEC 61400-21 European normative and the allowed amount of reactive power to be delivered according to the Spanish grid code, which avoids the disconnection of the inverter under grid faults by a limitation in the magnitude of the three-phase output inverter currents. For this, the calculation of the positive- and negative-sequences of the grid voltages is made and a conventional three-phase Phase-Locked Loop is used for the inverter-grid synchronization, allowing the control of the active and reactive powers solely with the dq components of the inverter currents. A detailed enhanced flowchart of the control algorithm with low-voltage-ride-through capability is presented and several simulations and experiments using Matlab/SIMULINK and the Controller Hardware-in-the-Loop simulation technique, respectively, are run for several types of one- and three-phase voltage sags in order to validate its behavior.


Sign in / Sign up

Export Citation Format

Share Document