scholarly journals Input switched closed-loop single phase ĈUK AC to DC converter with improved power quality

Author(s):  
Md. Shamsul Arifin ◽  
Nur Mohammad ◽  
Mohammad Ibrahim Khalil ◽  
Mohammad Jahangir Alam

<span lang="EN-US">A new closed loop AC to DC ĈUK converter is presented in this paper. The conventional ĈUK AC to DC converter has no feedback circuit. Thereby, the output voltage of the converter changes while changing the load. The proposed closed loop converter can regulate voltage with the variation of load over a wide range. Moreover, the power factor and Total Harmonic Distortion (THD) of the supply side current found quite satisfactory from this closed loop ĈUK converter. The converter operates in four steps with a different combination of voltage polarities and switching states. The feedback path consists of a voltage control loop and a current control loop. The closed loop ĈUK converter in this study is compared with the open loop version. Additionally, the comparison is made with the conventional converter of the same topology. The effectiveness in terms of power factor and THD of the proposed converter is verified using simulation results.</span>

Author(s):  
Shadman Sakib ◽  
Ahmed Jawad Kabir ◽  
Shajal Khansur ◽  
Jewel Rana

In this paper, analysis and design of a novel single phase AC-DC CUK converter circuit has been proposed where Power Factor Correction (PFC) controller scheme has been used in order to obtain better performance than conventional converters. Closed loop technique is applied to the bridgeless converter in order to achieve low input current, Total Harmonic Distortion (THD) at input AC mains along with near unity power factor. Performance comparison between open loop and closed loop of the proposed converter is made without filtering. The problems arise with open loop is sufficiently minimized by using power factor correction controller. The performance comparison between proposed and conventional CUK AC-DC converter operating in Continuous Conduction Mode (CCM) is made based on circuit simulations using PSIM softwere.


Author(s):  
Md. Shamsul Arifin ◽  
Mohammad Jahangir Alam

DC power supply has become the driving source for some essential modern applications. Thereby, DC power conditioning has become a significant issue for engineers. Typically used rectifiers associated with a bridge structure is nonlinear in nature. Thereby, the current at input side of the rectifier contains harmonics, which also flow through the power line. The presence of harmonics causes several interruptions and reduce power quality. In this regard, a new close loop SEPIC controlled rectifier is proposed in this paper. The conventional scheme is arranged with a rectifier connected to a DC-DC converter, which is an open loop system. Consequently, such system cannot regulate voltage at load varying condition. The proposed SEPIC controlled rectifier can regulate voltage under load varying condition for a wide range. Additionally, the performance in terms of total harmonic distortion (THD) of input current and power factor at AC side are also within satisfactory range for the closed loop configuration. The controlled rectifier has four operating phases associated with switching states and input voltage polarity. The close loop configuration also incorporates a current and a voltage loop at the feedback path. The comparative studies have been performed among the proposed closed loop construction, the open-loop structure as well as the conventional construction. The effectiveness of the proposed controlled rectifier is verified in terms of THD and input power factor considering the results obtained from simulation.


Author(s):  
Peethala Rajiv Roy ◽  
P. Parthiban ◽  
B. Chitti Babu

Abstract This paper deals with implementation of a single-phase three level converter system under low voltage condition. The frequency of the switches is made constant and involves change in ${t_{on}}$ and ${t_{off}}$ duration. For this condition the pulse width modulation control scheme for a single phase three level rectifier is developed to improve the power quality. The hysteresis current control technique is adopted to bring forth three-level PWM on the dc side of the bridge rectifier and to achieve high power factor and low harmonic distortion. Based on the proposed control scheme, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage. By using three-level voltage pattern the blocking voltage of each power device is clamped to half of the dc link voltage. The simulation and experimental results of 20W converter under low input voltage condition are shown to verify the circuit performance. Open loop simulation and hardware tests are implemented by applying a low voltage of 15 V(rms) on the input side.


This paper presents about the comparison between single-phase PFC Cuk converter and bridgeless PFC (BPFC) Cuk converter for low power application. This study attempts to investigate the characteristics of conventional and bridgeless PFC Cuk converter structures with three different output voltages and verified by the simulation results. The BPFC Cuk converter provides a lower Total Harmonic Distortion (THD) of input current than the conventional PFC Cuk converter. However, the conventional PFC Cuk converter has advantage of less maximum current stress at components compared to the BPFC Cuk converter. Conventional and BPFC Cuk converter can achieve an approximately unity power factor (PF).


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 756 ◽  
Author(s):  
Nazanin Neshatvar ◽  
Peter Langlois ◽  
Richard Bayford ◽  
Andreas Demosthenous

An important component in bioimpedance measurements is the current driver, which can operate over a wide range of impedance and frequency. This paper provides a review of integrated circuit analog current drivers which have been developed in the last 10 years. Important features for current drivers are high output impedance, low phase delay, and low harmonic distortion. In this paper, the analog current drivers are grouped into two categories based on open loop or closed loop designs. The characteristics of each design are identified.


The basic Converters like buck, boost and buckboost provide pulsed ripple currents either on input or output sides. A Cuk Converter has inductors on both input and output sides, thus produces continuous currents with reduced ripple. By extending the Cuk Converter to AC side with the support of additional rectifier circuit the power factor can be assessed. The significant concerns when utilizing DC-DC converters with AC source is large Total Harmonic Distortion (THD) and low power factor. A properly designed filter circuit on AC side reduces THD and improves the power factor. In this paper a Cuk Converter (CC) topology with rectifier and inductive. capacitive. inductive (LCL) filter is proposed to reduce THD and improve the power factor. The CC circuit is designed and analyzed to reduce ripple content of currents. The reduction in ripple on DC side in turn improves the sinusoidal shape of current on AC source side. The closed loop simulation of the proposed circuit is carried out using a systematically derived type III compensator. The proposed circuit is practically validated in closed loop using FPGA controller to confirm the simulated waveforms. The results substantiate the fact that the proposed circuit shrinks ripple on DC source side and reduces harmonics of AC source current. The reduction in harmonics decreases THD to a large extent and improves distortion factor, which enhances the power factor. Also the reduction in ripple trims down losses in the circuit and improves the output power, thus suitable for DC to DC conversions in power supplies for viz. electric vehicles, computers, battery chargers and televisions. The improvement in power factor reduces the power drawn from the source and hence the efficiency of the system is improved.


Author(s):  
Kondreddy Sreekanth Reddy ◽  
Sreenivasappa B. Veeranna

In this paper, a single phase multifunctional integrated converter is proposed for electric vehicles (EVs) with single stage power conversion. The main objective of the proposed topology is to reduce the weight, size, and cost of the power electronic converter system used in EVs compared to the existing topologies that are already available in the industries. The novelty of the proposed topology includes: (i) single converter for charging, propulsion and regenerative braking; (ii) reduction of number of switches to reduce the switching and conduction losses; (iii) improving the efficiency by reducing the value of inductor; (iv) power factor correction for AC grid; and (v) improving the total harmonic distortion of the grid current. The complete analysis of the various modes of operation of the proposed topology is analyzed and implemented through MATLAB/Simulink software simulation and a power factor of 0.9999 and a current total harmonic distortion (THD) of 2.16% is achieved. The proposed topology is also compared with the existing topologies in terms of number of switches, diodes, inductors and capacitors used.


Author(s):  
R. Kalai Priya

This paper analysis with PFC Cuk converter fed LED drive to overcome the power factor problems. The proposed circuit topology consists of diode bridge rectifier and Cuk converter. Cuk converter is operated to work under CCM mode. This combination of DBR and PFC converter is used to feed a LED drive. This converter is simulated in MATLAB software. This Cuk converter provides better results such as unity power factor and low current harmonic distortion with fuzzy logic control and hysteresis control.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


2015 ◽  
Author(s):  
Ioannis Vlachos ◽  
Taskin Deniz ◽  
Ad Aertsen ◽  
Arvind Kumar

There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks. Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC besides steering the system back to a healthy state, it also recovers the computations performed by the underlying network. Finally, using our theory we isolate the role of single neuron and synapse properties in determining the stability of the closed-loop system.


Sign in / Sign up

Export Citation Format

Share Document