scholarly journals Machine Learning Models and Neural Network Techniques for Predicting Uddanam CKD

2019 ◽  
Vol 8 (2) ◽  
pp. 2550-2563

Chronic kidney disease (CKD) is one of the most widely spread diseases across the world. Mysteriously some of the areas in the world like Srilanka, Nicrgua and Uddanam (India), this disease affect more and it is cause of thousands of deaths particular areas. Now days, the prevention with utilizing statistical analysis and early detection of CKD with utilizing Machine Learning (ML) and Neural Networks (NNs) are the most important topics. In this research work, we collected the data form Uddanam (costal area of srikakulam district, A.P, India) about patient’s clinical data, living styles (Habits and culture) and environmental conditions (water, land and etc.) data from 2016 to 2019. In this paper, we conduct the statistical analysis, Machine Learning (ML) and Neural Network application on clinical data set of Uddanam CKD for prevention and early detection of CKD. As per statistical analysis we can prevent the CKD in the Uddanam area. As per ML analysis Naive Bayes model is the best where the process model is constructed within 0.06 seconds and prediction accuracy is 99.9%. In the analysis of NNs, the 9 neurons hidden layer (HL) Artificial Neural Network (ANN) is very accurate than other all models where it performs 100% of accuracy for predicting CKD and it takes the 0.02 seconds process time.

Author(s):  
Syed Farhan Hyder Abidi ◽  
Sumukhi T. ◽  
Vinod Kumar H. ◽  
Santhosh B.

Lung malignant growth is one of the most threatening ailments affecting most of the nations in the world, and detection in earlier stages has been a challenge. Early detection can help in saving many lives. This paper shows a methodology that uses a convolutional neural network (CNN) in machine learning for the detection of tumours in the lung. The specificity of the model is desirable and dependable and increasingly productive in contrast to the accuracy shown by conventional neural system frameworks.


Author(s):  
Rohit Rastogi ◽  
Devendra Kumar Chaturvedi ◽  
Sathiyamoorthi V.

Many apps and analyzers based on machine learning have been designed already to help and cure the stress issue, which is increasing. The project is based on an experimental research work that the authors have performed at Research Labs and Scientific Spirituality Centers of Dev Sanskriti VishwaVidyalaya, Haridwar and Patanjali Research Foundations, Uttarakhand. In the research work, the correctness and accuracy have been studied and compared for two biofeedback devices named as electromyography (EMG) and galvanic skin response (GSR), which can operate in three modes, audio, visual and audio-visual, with the help of data set of tension type headache (TTH) patients. The authors have realized by their research work that these days people have lot of stress in their life so they planned to make an effort for reducing the stress level of people by their technical knowledge of computer science. In the project they have a website that contains a closed set of questionnaires from SF-36, which have some weight associated with each question.


2019 ◽  
Author(s):  
Longxiang Su ◽  
Chun Liu ◽  
Dongkai Li ◽  
Jie He ◽  
Fanglan Zheng ◽  
...  

BACKGROUND Heparin is one of the most commonly used medications in intensive care units. In clinical practice, the use of a weight-based heparin dosing nomogram is standard practice for the treatment of thrombosis. Recently, machine learning techniques have dramatically improved the ability of computers to provide clinical decision support and have allowed for the possibility of computer generated, algorithm-based heparin dosing recommendations. OBJECTIVE The objective of this study was to predict the effects of heparin treatment using machine learning methods to optimize heparin dosing in intensive care units based on the predictions. Patient state predictions were based upon activated partial thromboplastin time in 3 different ranges: subtherapeutic, normal therapeutic, and supratherapeutic, respectively. METHODS Retrospective data from 2 intensive care unit research databases (Multiparameter Intelligent Monitoring in Intensive Care III, MIMIC-III; e–Intensive Care Unit Collaborative Research Database, eICU) were used for the analysis. Candidate machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic, normal therapeutic, and supratherapeutic patient states. The model results were evaluated using precision, recall, F1 score, and accuracy. RESULTS Data from the MIMIC-III database (n=2789 patients) and from the eICU database (n=575 patients) were used. In 3-class classification, the shallow neural network algorithm performed the best (F1 scores of 87.26%, 85.98%, and 87.55% for data set 1, 2, and 3, respectively). The shallow neural network algorithm achieved the highest F1 scores within the patient therapeutic state groups: subtherapeutic (data set 1: 79.35%; data set 2: 83.67%; data set 3: 83.33%), normal therapeutic (data set 1: 93.15%; data set 2: 87.76%; data set 3: 84.62%), and supratherapeutic (data set 1: 88.00%; data set 2: 86.54%; data set 3: 95.45%) therapeutic ranges, respectively. CONCLUSIONS The most appropriate model for predicting the effects of heparin treatment was found by comparing multiple machine learning models and can be used to further guide optimal heparin dosing. Using multicenter intensive care unit data, our study demonstrates the feasibility of predicting the outcomes of heparin treatment using data-driven methods, and thus, how machine learning–based models can be used to optimize and personalize heparin dosing to improve patient safety. Manual analysis and validation suggested that the model outperformed standard practice heparin treatment dosing.


A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7709
Author(s):  
Serena Cerfoglio ◽  
Manuela Galli ◽  
Marco Tarabini ◽  
Filippo Bertozzi ◽  
Chiarella Sforza ◽  
...  

Nowadays, the use of wearable inertial-based systems together with machine learning methods opens new pathways to assess athletes’ performance. In this paper, we developed a neural network-based approach for the estimation of the Ground Reaction Forces (GRFs) and the three-dimensional knee joint moments during the first landing phase of the Vertical Drop Jump. Data were simultaneously recorded from three commercial inertial units and an optoelectronic system during the execution of 112 jumps performed by 11 healthy participants. Data were processed and sorted to obtain a time-matched dataset, and a non-linear autoregressive with external input neural network was implemented in Matlab. The network was trained through a train-test split technique, and performance was evaluated in terms of Root Mean Square Error (RMSE). The network was able to estimate the time course of GRFs and joint moments with a mean RMSE of 0.02 N/kg and 0.04 N·m/kg, respectively. Despite the comparatively restricted data set and slight boundary errors, the results supported the use of the developed method to estimate joint kinetics, opening a new perspective for the development of an in-field analysis method.


Author(s):  
Sercan Demirci ◽  
Durmuş Özkan Şahin ◽  
Ibrahim Halil Toprak

Skin cancer, which is one of the most common types of cancer in the world, is a malignant growth seen on the skin due to various reasons. There was an increase in the number of the cases of skin cancer nearly 200% between 2004-2009. Since the ozone layer is depleting, harmful rays reflected from the sun cannot be filtered. In this case, the likelihood of skin cancer will increase over the years and pose more risks for human beings. Early diagnosis is very significant as in all types of cancers. In this study, a mobile application is developed in order to detect whether the skin spots photographed by using the machine learning technique for early diagnosis have a suspicion of skin cancer. Thus, an auxiliary decision support system is developed that can be used both by the clinicians and individuals. For cases that are predicted to have a risk higher than a certain rate by the machine learning algorithm, early diagnosis could be initiated for the patients by consulting a physician when the case is considered to have a higher risk by machine learning algorithm.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA41-WA52 ◽  
Author(s):  
Dario Grana ◽  
Leonardo Azevedo ◽  
Mingliang Liu

Among the large variety of mathematical and computational methods for estimating reservoir properties such as facies and petrophysical variables from geophysical data, deep machine-learning algorithms have gained significant popularity for their ability to obtain accurate solutions for geophysical inverse problems in which the physical models are partially unknown. Solutions of classification and inversion problems are generally not unique, and uncertainty quantification studies are required to quantify the uncertainty in the model predictions and determine the precision of the results. Probabilistic methods, such as Monte Carlo approaches, provide a reliable approach for capturing the variability of the set of possible models that match the measured data. Here, we focused on the classification of facies from seismic data and benchmarked the performance of three different algorithms: recurrent neural network, Monte Carlo acceptance/rejection sampling, and Markov chain Monte Carlo. We tested and validated these approaches at the well locations by comparing classification predictions to the reference facies profile. The accuracy of the classification results is defined as the mismatch between the predictions and the log facies profile. Our study found that when the training data set of the neural network is large enough and the prior information about the transition probabilities of the facies in the Monte Carlo approach is not informative, machine-learning methods lead to more accurate solutions; however, the uncertainty of the solution might be underestimated. When some prior knowledge of the facies model is available, for example, from nearby wells, Monte Carlo methods provide solutions with similar accuracy to the neural network and allow a more robust quantification of the uncertainty, of the solution.


Author(s):  
Rasmita Lenka ◽  
Koustav Dutta ◽  
Ashimananda Khandual ◽  
Soumya Ranjan Nayak

The chapter focuses on application of digital image processing and deep learning for analyzing the occurrence of malaria from the medical reports. This approach is helpful in quick identification of the disease from the preliminary tests which are carried out in a person affected by malaria. The combination of deep learning has made the process much advanced as the convolutional neural network is able to gain deeper insights from the medical images of the person. Since traditional methods are not able to detect malaria properly and quickly, by means of convolutional neural networks, the early detection of malaria has been possible, and thus, this process will open a new door in the world of medical science.


2020 ◽  
Vol 44 (1) ◽  
pp. 231-269
Author(s):  
Rong Chen

Abstract Plural marking reaches most corners of languages. When a noun occurs with another linguistic element, which is called associate in this paper, plural marking on the two-component structure has four logically possible patterns: doubly unmarked, noun-marked, associate-marked and doubly marked. These four patterns do not distribute homogeneously in the world’s languages, because they are motivated by two competing motivations iconicity and economy. Some patterns are preferred over others, and this preference is consistently found in languages across the world. In other words, there exists a universal distribution of the four plural marking patterns. Furthermore, holding the view that plural marking on associates expresses plurality of nouns, I propose a hypothetical universal which uses the number of pluralized associates to predict plural marking on nouns. A data set collected from a sample of 100 languages is used to test the hypothetical universal, by employing the machine learning algorithm logistic regression.


2019 ◽  
Vol 8 (6) ◽  
pp. 799 ◽  
Author(s):  
Cheng-Shyuan Rau ◽  
Shao-Chun Wu ◽  
Jung-Fang Chuang ◽  
Chun-Ying Huang ◽  
Hang-Tsung Liu ◽  
...  

Background: We aimed to build a model using machine learning for the prediction of survival in trauma patients and compared these model predictions to those predicted by the most commonly used algorithm, the Trauma and Injury Severity Score (TRISS). Methods: Enrolled hospitalized trauma patients from 2009 to 2016 were divided into a training dataset (70% of the original data set) for generation of a plausible model under supervised classification, and a test dataset (30% of the original data set) to test the performance of the model. The training and test datasets comprised 13,208 (12,871 survival and 337 mortality) and 5603 (5473 survival and 130 mortality) patients, respectively. With the provision of additional information such as pre-existing comorbidity status or laboratory data, logistic regression (LR), support vector machine (SVM), and neural network (NN) (with the Stuttgart Neural Network Simulator (RSNNS)) were used to build models of survival prediction and compared to the predictive performance of TRISS. Predictive performance was evaluated by accuracy, sensitivity, and specificity, as well as by area under the curve (AUC) measures of receiver operating characteristic curves. Results: In the validation dataset, NN and the TRISS presented the highest score (82.0%) for balanced accuracy, followed by SVM (75.2%) and LR (71.8%) models. In the test dataset, NN had the highest balanced accuracy (75.1%), followed by the TRISS (70.2%), SVM (70.6%), and LR (68.9%) models. All four models (LR, SVM, NN, and TRISS) exhibited a high accuracy of more than 97.5% and a sensitivity of more than 98.6%. However, NN exhibited the highest specificity (51.5%), followed by the TRISS (41.5%), SVM (40.8%), and LR (38.5%) models. Conclusions: These four models (LR, SVM, NN, and TRISS) exhibited a similar high accuracy and sensitivity in predicting the survival of the trauma patients. In the test dataset, the NN model had the highest balanced accuracy and predictive specificity.


Sign in / Sign up

Export Citation Format

Share Document