scholarly journals Postulation of Customer Retention in Banking Sector using Machine Learning and Principal Component

2019 ◽  
Vol 8 (4) ◽  
pp. 3178-3182

Recently, there is a rapid growth in technological improvement in banking sector. The entire world is using the banking service for managing their financial and property assets. As of now, all the technological advancements are applied to banking sector to facilitate the customers with proper operational excellence. In this view, the bank has complete responsibility in serving the people with their modern application to save their time and wealth. So the customer value analysis is needed for the bank to enrich the marketing growth and turnover of the bank. But still, the prediction of customer churn remains a challenging issue for the banking sector for analyzing the profit growth. With this view, we focus on predicting the customer churn for the banking application. This paper uses the churn modeling data set extracted from UCI Machine Learning Repository. The anaconda Navigator IDE along with Spyder is used for implementing the Python code. Our contribution is folded is folded in three ways. First, the data set is applied to various classifiers like Logistic Regression, KNN, Kernel SVM, Naive Bayes, Decision Tree, Random Forest to analyze the confusion matrix. The Performance analysis is done by comparing the metrics like Precision, Recall, FScore and Accuracy. Second the data set is subjected to dimensionality reduction method using Principal component Analysis and then fitted to the above mentioned classifiers and their performance analysis is done. Third, the performance analysis is done for the dataset by comparing the metrics with and without applying the dimensionality reduction. A Performance analysis is done with various classification algorithms and comparative study is done with the performance metric such as accuracy, precision, recall, and f-score. The implementation is carried out with python code using Anaconda Navigator. Experimental results shows that before applying dimensionality reduction PCA, the Random Forest classifier is found to be effective with the accuracy of 86%, Precision of 0.85, Recall of 0.86 and FScore of 0.84. Experimental results shows that after applying dimensionality reduction, the 2 component PCA with the kernel SVM classifier is found to be effective with the accuracy of 81%, Precision of 0.81, Recall of 0.81 and FScore of 0.74. compared to other classifiers.

2020 ◽  
Vol 8 (5) ◽  
pp. 2488-2493

The technological advancement can help the entire application field to predict the damage and to forecast the future target of the object. The wealth of the world is in the health of the people. So the technology must support the technologists in predicting the disease in advance. The machine learning is the emerging field which is used to forecast the existence of the heart disease through the values of the clinical parameters. With this view, we focus on predicting the customer churn for the banking application. This paper uses the customer churn bank modeling data set extracted from UCI Machine Learning Repository. The anaconda Navigator IDE along with Spyder is used for implementing the Python code. Our contribution is folded is folded in three ways. First, the data is processed to find the relationship between the elements of the dataset. Second, the data set is applied for Ada Boost regressors and the important elements are identified. Third, the dataset is applied to feature scaling and then fitted to kernel support vector machine, logistic regression classifier, Naive bayes classifier, random forest classifier, decision tree classifier and KNN classifier. Fourth, the dataset is dimensionality reduced with principal component analysis with five components and then applied to the previously mentioned classifiers. Fifth, the performance of the classifiers is analyzed with the indication metrics like precision, accuracy, recall and Fscore. The implementation is carried out with python code using Anaconda Navigator. Experimental results show that, the Naïve bayes classifier is more effective with the precision of 0.90 for dataset with random boost, feature scaled and PCA. Experimental results show that, the Naïve bayes classifier is more effective with the recall of 0.91 for dataset with random boost, feature scaled and PCA. Experimental results show that, the Naïve bayes classifier is more effective with the Fscore of 0.92 for dataset with random boost, feature scaled and PCA. Experimental results show, the Naïve bayes classifier is more effective with the accuracy of 91% without random boost, 93% with random boosting and 92% with principal component analysis.


2020 ◽  
Author(s):  
R Srivat ◽  
Prithviraj N Indi ◽  
Swapnil Agrahari ◽  
Siddharth Menon ◽  
S. Denis Ashok

Abstract From public health perspectives of COVID-19 pandemic, accurate estimates of infection severity of individuals are extremely valuable for the informed decision making and targeted response to an emerging pandemic. This paper presents machine learning based prognostic model for providing early warning to the individuals for COVID-19 infection using the health care data set. In the present work, a prognostic model using Random Forest classifier and support vector regression is developed for predicting the susceptibility of COVID-19 infection and it is applied on an open health care data set containing 27 field values. The typical fields of the health care data set include basic personal details such as age, gender, number of children in the household, marital status along with medical data like Coma score, Pulmonary score, Blood Glucose level, HDL cholesterol etc. An effective preprocessing method is carried out for handling the numerical, categorical values (non-numerical), missing data in the health care data set. Principal component analysis is applied for dimensionality reduction of the health care data set. From the classification results, it is noted that the random forest classifier provides a higher accuracy as compared to Support vector regression for the given health data set. Proposed machine learning approach can help the individuals to take additional precautions for protecting against COVID-19 infection. Based on the results of the proposed method, clinicians and government officials can focus on the highly susceptible people for limiting the pandemic spread. Methods In the present work, Random Forest classifier and support vector regression techniques are applied to a medical health care dataset containing 27 variables for predicting the susceptibility score of an individual towards COVID-19 infection and the accuracy of prediction is compared. An effective preprocessing is carried for handling the missing data in the health care data set. Principal Component Analysis is carried out on the data set for dimensionality reduction of the feature vectors. Results From the classification results, it is noted that the Random Forest classifier provides an accuracy of 90%, sensitivity of 94% and specificity of 81% for the given medical data set.Conclusion Proposed machine learning approach can help the individuals to take additional precautions for protecting people from the COVID-19 infection, clinicians and government officials can focus on the highly susceptible people for limiting the pandemic spread.


2019 ◽  
Vol 8 (2) ◽  
pp. 6198-6203

Recently, manufacturing industry faces lots of problem in predicting the customer behavior and group for matching their outcome with the profit. The organizations are finding difficult in identifying the customer behavior for the purpose of predicting the product design so as to increase the profit. The prediction of customer group is a challenging task for all the organization due to the current growing entrepreneurs. This results in using the machine learning algorithms to cluster the customer group for predicting the demand of the customers. This helps in decision making process of manufacturing the products. This paper attempts to predict the customer group for the wine data set extracted from UCI Machine Learning repository. The wine data set is subjected to dimensionality reduction with principal component analysis and linear discriminant analysis. A Performance analysis is done with various classification algorithms and comparative study is done with the performance metric such as accuracy, precision, recall, and f-score. Experimental results shows that after applying dimensionality reduction, the 2 component LDA reduced wine data set with the kernel SVM, Random Forest classifier is found to be effective with the accuracy of 100% compared to other classifiers.


2019 ◽  
Vol 8 (4) ◽  
pp. 3244-3249

In the current moving technological business sector, the amount spent for attaching the new customer is highly expensive and time consuming process than adopting some methods to hold and retain the existing customers. So the business sector is in need to make a research on with holding the existing customers by using the current technology. The methods to make the retention of the existing customers with high reliablility are a challenging task. With this view, we focus on predicting the customer churn for the banking application. This paper uses the customer churn bank modeling data set extracted from UCI Machine Learning Repository. The anaconda Navigator IDE along with Spyder is used for implementing the Python code. Our contribution is folded is folded in three ways. First, the data preprocessing is done and the relationship between the attributes are identified. Second, the data set is reduced with the principal component analysis to form the 2 component feature reduced dataset. Third, the raw dataset and 2 component PCA reduced dataset is fitted to various solvers of logistic regression classifiers and the performance is analyzed with the confusion matrix. Fourth, the raw dataset and 2 component PCA reduced dataset is fitted to various neighboring algorithms of K-Nearest Neighbors classifiers and the performance is analyzed with the confusion matrix. Fifth, the raw dataset and 2 component PCA reduced dataset is fitted to various kernels of Support Vector Machine classifiers and the performance is analyzed with the confusion matrix. The implementation is carried out with python code using Anaconda Navigator. Experimental results shows that, the rbf kernel of Support vector machine classifier is effective with the accuracy of 85.8% before applying PCA and accuracy of 80.9% after applying PCA compared to other classifiers.


Author(s):  
Jun Pei ◽  
Zheng Zheng ◽  
Hyunji Kim ◽  
Lin Song ◽  
Sarah Walworth ◽  
...  

An accurate scoring function is expected to correctly select the most stable structure from a set of pose candidates. One can hypothesize that a scoring function’s ability to identify the most stable structure might be improved by emphasizing the most relevant atom pairwise interactions. However, it is hard to evaluate the relevant importance for each atom pair using traditional means. With the introduction of machine learning methods, it has become possible to determine the relative importance for each atom pair present in a scoring function. In this work, we use the Random Forest (RF) method to refine a pair potential developed by our laboratory (GARF6) by identifying relevant atom pairs that optimize the performance of the potential on our given task. Our goal is to construct a machine learning (ML) model that can accurately differentiate the native ligand binding pose from candidate poses using a potential refined by RF optimization. We successfully constructed RF models on an unbalanced data set with the ‘comparison’ concept and, the resultant RF models were tested on CASF-2013.5 In a comparison of the performance of our RF models against 29 scoring functions, we found our models outperformed the other scoring functions in predicting the native pose. In addition, we used two artificial designed potential models to address the importance of the GARF potential in the RF models: (1) a scrambled probability function set, which was obtained by mixing up atom pairs and probability functions in GARF, and (2) a uniform probability function set, which share the same peak positions with GARF but have fixed peak heights. The results of accuracy comparison from RF models based on the scrambled, uniform, and original GARF potential clearly showed that the peak positions in the GARF potential are important while the well depths are not. <br>


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1809
Author(s):  
Mohammed El Amine Senoussaoui ◽  
Mostefa Brahami ◽  
Issouf Fofana

Machine learning is widely used as a panacea in many engineering applications including the condition assessment of power transformers. Most statistics attribute the main cause of transformer failure to insulation degradation. Thus, a new, simple, and effective machine-learning approach was proposed to monitor the condition of transformer oils based on some aging indicators. The proposed approach was used to compare the performance of two machine-learning classifiers: J48 decision tree and random forest. The service-aged transformer oils were classified into four groups: the oils that can be maintained in service, the oils that should be reconditioned or filtered, the oils that should be reclaimed, and the oils that must be discarded. From the two algorithms, random forest exhibited a better performance and high accuracy with only a small amount of data. Good performance was achieved through not only the application of the proposed algorithm but also the approach of data preprocessing. Before feeding the classification model, the available data were transformed using the simple k-means method. Subsequently, the obtained data were filtered through correlation-based feature selection (CFsSubset). The resulting features were again retransformed by conducting the principal component analysis and were passed through the CFsSubset filter. The transformation and filtration of the data improved the classification performance of the adopted algorithms, especially random forest. Another advantage of the proposed method is the decrease in the number of the datasets required for the condition assessment of transformer oils, which is valuable for transformer condition monitoring.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1822
Author(s):  
Norbert Huber

Nanoporous metals, with their complex microstructure, represent an ideal candidate for the development of methods that combine physics, data, and machine learning. The preparation of nanporous metals via dealloying allows for tuning of the microstructure and macroscopic mechanical properties within a large design space, dependent on the chosen dealloying conditions. Specifically, it is possible to define the solid fraction, ligament size, and connectivity density within a large range. These microstructural parameters have a large impact on the macroscopic mechanical behavior. This makes this class of materials an ideal science case for the development of strategies for dimensionality reduction, supporting the analysis and visualization of the underlying structure–property relationships. Efficient finite element beam modeling techniques were used to generate ~200 data sets for macroscopic compression and nanoindentation of open pore nanofoams. A strategy consisting of dimensional analysis, principal component analysis, and machine learning allowed for data mining of the microstructure–property relationships. It turned out that the scaling law of the work hardening rate has the same exponent as the Young’s modulus. Simple linear relationships are derived for the normalized work hardening rate and hardness. The hardness to yield stress ratio is not limited to 1, as commonly assumed for foams, but spreads over a large range of values from 0.5 to 3.


2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hai-Bang Ly ◽  
Thuy-Anh Nguyen ◽  
Binh Thai Pham

Soil cohesion (C) is one of the critical soil properties and is closely related to basic soil properties such as particle size distribution, pore size, and shear strength. Hence, it is mainly determined by experimental methods. However, the experimental methods are often time-consuming and costly. Therefore, developing an alternative approach based on machine learning (ML) techniques to solve this problem is highly recommended. In this study, machine learning models, namely, support vector machine (SVM), Gaussian regression process (GPR), and random forest (RF), were built based on a data set of 145 soil samples collected from the Da Nang-Quang Ngai expressway project, Vietnam. The database also includes six input parameters, that is, clay content, moisture content, liquid limit, plastic limit, specific gravity, and void ratio. The performance of the model was assessed by three statistical criteria, namely, the correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). The results demonstrated that the proposed RF model could accurately predict soil cohesion with high accuracy (R = 0.891) and low error (RMSE = 3.323 and MAE = 2.511), and its predictive capability is better than SVM and GPR. Therefore, the RF model can be used as a cost-effective approach in predicting soil cohesion forces used in the design and inspection of constructions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiasong Wu ◽  
Xiang Qiu ◽  
Jing Zhang ◽  
Fuzhi Wu ◽  
Youyong Kong ◽  
...  

Generative adversarial networks and variational autoencoders (VAEs) provide impressive image generation from Gaussian white noise, but both are difficult to train, since they need a generator (or encoder) and a discriminator (or decoder) to be trained simultaneously, which can easily lead to unstable training. To solve or alleviate these synchronous training problems of generative adversarial networks (GANs) and VAEs, researchers recently proposed generative scattering networks (GSNs), which use wavelet scattering networks (ScatNets) as the encoder to obtain features (or ScatNet embeddings) and convolutional neural networks (CNNs) as the decoder to generate an image. The advantage of GSNs is that the parameters of ScatNets do not need to be learned, while the disadvantage of GSNs is that their ability to obtain representations of ScatNets is slightly weaker than that of CNNs. In addition, the dimensionality reduction method of principal component analysis (PCA) can easily lead to overfitting in the training of GSNs and, therefore, affect the quality of generated images in the testing process. To further improve the quality of generated images while keeping the advantages of GSNs, this study proposes generative fractional scattering networks (GFRSNs), which use more expressive fractional wavelet scattering networks (FrScatNets), instead of ScatNets as the encoder to obtain features (or FrScatNet embeddings) and use similar CNNs of GSNs as the decoder to generate an image. Additionally, this study develops a new dimensionality reduction method named feature-map fusion (FMF) instead of performing PCA to better retain the information of FrScatNets,; it also discusses the effect of image fusion on the quality of the generated image. The experimental results obtained on the CIFAR-10 and CelebA datasets show that the proposed GFRSNs can lead to better generated images than the original GSNs on testing datasets. The experimental results of the proposed GFRSNs with deep convolutional GAN (DCGAN), progressive GAN (PGAN), and CycleGAN are also given.


Sign in / Sign up

Export Citation Format

Share Document