scholarly journals ALTERNATIVE DESIGN OF THE BUILDING STRUCTURE OF STEEL FRAME BRIDGE TYPE STEEL ARCH WITH WARREN FRAME IN TUKAD BANGKUNG BRIDGE IN BADUNG - BALI

Author(s):  
Sudirman Indra ◽  
Mohammad Erfan ◽  
I Komang Dedi Wijaya

In planning and designing a bridge it should consider the function of transportation needs, technical and architectural-aesthetic requirements which include: Traffic aspects, Technical aspects, Aesthetic aspects. the alternative bridge design structure of the steel arch bridge-type steel frame with warren frame on the Tukad Bridge in Bangkung district. Badung - Bali is a steel frame bridge that has an overall span of 360 m and 9.6 m wide. alternative upper structure at the Tukad Bangkung bridge Badung Regency - Bali with the merging of the steel arch construction of 2 roller joints and the warren frame structure. Where between the curve/arc with a steel profile plate connected by a cable that serves to provide strong support to the frame structure because of the long stretch. In the planning of the bridge this time using the L.R.F.D method and for the structural analysis modeling the writer uses the STAADPRO V8i assistive program. From the analysis of the results of the calculation of the structure above obtained planning dimensions of the Steel Arch bridge that is planned to use a steel profile, WF 350 x 175 x 7 x 11 for gel. elongated, WF 918 x 303 x 19 x 37 for gel. transversely, WF 350 x 350 x 12 x 9 for gel. transversely above, WF 498 x 432 x 45 x 70 for gel. parent, LD 250,250.25 for wind bonds.

2018 ◽  
Vol 2 (2) ◽  
pp. 10-21
Author(s):  
Febry Suhendra ◽  
Faisal Ananda ◽  
Alamsyah Alamsyah

Bengkalis government do project to build Liong river bridge with construction type is concrete arch bridge. But at relatively new service time, there was a big deflection in one  of bridge segments. In this research will be design the bridge with steel arch bridge type.             Bridge design using RSNI T-02-2005 about bridge load standard. For steel frame design refers to RSNI T-03-2005, and concrete structure design refers to RSNI T-12-2004. In piles calculation, using the Schmertmann method.             The results of top structure design is top chord using WF.305.305.22.35, bottom chord WF. 305.305.39.63, diagonal chord WF.305.305.22.35, vertical hanger WF 203.203.10.17, wind bracing WF.203.203.8.12, truss bracing WF.203.203.8.12, girder using WF.400.200.8.13, cross girder WF.500.200.10.16, and the main girder using WF.500.200.10.16 profile. The results of bottom structure design is abutment width of 9,3 m and abutment length of 11 m.  Using concrete piles with diameter of 50 cm, length 20 m and 28 point of stake. The largest deflection of bridge is 118,72 mm. This deflection is still safe because the value smaller than tolerance deflection L/240, which is 458,33 mm. The most compatible construction method for liong II river bridge is temporary coloumn method.


2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


2019 ◽  
Vol 10 (1) ◽  
pp. 48-55
Author(s):  
Parthasarathi N. ◽  
Satyanarayanan K.S. ◽  
Prakash M. ◽  
Thamilarasu V.

Purpose Progressive collapse because of high temperatures arising from an explosion, vehicle impact or fire is an important issue for structural failure in high-rise buildings. Design/methodology/approach The present study, using ABAQUS software for the analysis, investigated the progressive collapse of a two-dimensional, three-bay, four-storey steel frame structure from high-temperature stresses. Findings After structure reaches the temperature results like displacement, stress axial load and shear force are discussed. Research limitations/implications Different temperatures were applied to the columns at different heights of a structure framed with various materials. Progressive collapse load combinations were also applied as per general service administration guidelines. Originality/value This study covered both steady-state and transient-state conditions of a multistorey-frame building subjected to a rise in temperature in the corner columns and intermediate columns. The columns in the framed structure were subjected to high temperatures at different heights, and the resulting displacements, stresses and axial loads were obtained, analysed and discussed.


Author(s):  
Eunchurn Park ◽  
Sang-Hyun Lee ◽  
Sung-Kyung Lee ◽  
Hee-San Chung ◽  
Kyung-Won Min

The accurate identification of the dynamic response characteristics of a building structure excited by input signals such as real earthquake or wind load is essential not only for the evaluation of the safety and serviceability of the building structure, but for the verification of an analytical model used in the seismic or wind design. In the field of system identification (SI) which constructs system matrices describing the accurate input/output relationship, it is critical that input should have enough energy to excite fundamental structural modes and a good quality of output containing structural information should be measured. In this study forced vibration testing which is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure was implemented. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which was numerically calculated based on the updated FE model.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Mengsheng Yu ◽  
Nianchun Deng ◽  
Qifeng Chen ◽  
Tianzhi Hao

The SRC (steel-frame reinforced concrete) arch bridge is an important part of the development of arch bridges. Scholars worldwide have studied it from various aspects because of its stronger stiffness and stability than other types of bridges especially when crossing the canyon. The steel frame is a stress bracket during construction. Concrete becomes the main axial-pressure bearing structure when it fills the inner pipe and the encased frame. This article mainly focuses on the crack problems of SRC arch bridging during the postconstruction operation, local model of the midspan arch rib, and the equivalent relationship between the coefficient of expansion and the temperature of concrete. This study uses a cooling method to simulate the shrinkage process with detailed analysis of three properties including concrete shrinkage, temperature gradients, and concentrated hanger rod force. It is concluded that the SRC arch bridge will have large tensile stress on both inner and outer surfaces of slab and web when the temperature changes, and it is the main cause of cracks. The results agree well with measured data. At last, we come up with some reference suggestions in the design and construction of similar bridges in the future.


Sign in / Sign up

Export Citation Format

Share Document