USE OF INDUSTRIAL BY-PRODUCTS AS MINERAL POWDERS IN ROAD CONSTRUCTION

2021 ◽  
Vol 2021 (24) ◽  
pp. 193-205
Author(s):  
Ivan Kopynets ◽  
◽  
Volodymyr Kaskiv ◽  
Оleksii Sokolov ◽  
◽  
...  

Introduction. Mineral powder is an important structural component of asphalt concrete. Mineral powder is the output material obtained after crushing of rocks or powdery remains of the industry. It is made by grinding the following hard rocks: dolomitized limestone, dolomite, limestone. Non-carbonate raw materials and industrial wastes are also used as raw materials. Problem statement. Road construction with the arrangement of asphalt concrete pavements requires a number of components of these mixtures. Due to this, the need in scarce carbonate mineral powders is growing. Therefore, it is advisable to consider researches directed on studying a number of by-products of industry in order to use them as a mineral powder of asphalt concrete. Purpose. To analyze the existing experience of using industrial waste as a mineral powder in production of asphalt concrete mixture for further introduction and improvement of environmental safety and operational characteristics of pavement due to new road construction materials. Materials and methods. Analysis of information sources and experience in the use of industrial waste as a mineral powder and study of requirements for materials and their composition. Results. An analytical review of the experience of using industrial waste as a mineral powder was performed. Various materials have been studied and analyzed, requirements for materials, their particle size distribution, content in asphalt concrete mixture had been established. Conclusions. Analysis of information sources regarding use of industrial waste as a raw material for the production of mineral powder had determined that they are used in the whole volume in different countries and in most cases in road construction. It had been found that the use of various wastes during road construction is a viable option that needs further study.

1989 ◽  
Vol 4 (2) ◽  
pp. 447-451 ◽  
Author(s):  
J. Majling ◽  
V. Jesenák ◽  
Della M. Roy ◽  
Rustum Roy

A method has been developed for determining the equilibrium phase composition of multicomponent systems at subsolidus conditions and atmospheric pressure, based on the knowledge of binary phase compatibilities and on information concerning the existence and stoichiometry of ternary and higher order compounds. The method, combined with material balance, enables computation of the changes of equilibrium phase compositions of fired products dependent on the proportions of multicomponent raw materials; the procedure is useful for assessing the exploitability of industrial wastes for production of binding materials and ceramics. It is also possible to find the raw material mixture composition needed for the desired phase composition of the fired product.


2020 ◽  
Vol 157 ◽  
pp. 06010
Author(s):  
Dmitry Kuznetsov ◽  
Marina Vysotskaya ◽  
Albert Burgonutdinov

The possibility of using polydisperse steel-smelting slag for the production of type B asphalt concrete is investigated, the possibility of its use as a mineral powder, crushing screening and crushed stone is considered. As a result of the study, it was found that a promising area for the use of slag raw materials in the technology for the preparation of asphalt mixes is: as a mineral powder - without additional processing steps; crushing screening - with the development of additional technological operations. The use of raw materials as crushed stone is impractical because of the high average density of the final asphalt mixture. Based on the test results, the characteristics of the fatigue properties of asphalt concrete from fine-grained dense mixtures of type B made on mineral powders from slag and limestone were obtained. It was established that at the initial moment, a large number of cycles to failure are characterized by compositions on slag powder, however, samples from this series tested after 45 days showed a significant rigidity increase and were destroyed earlier than similar samples on limestone. Obviously, this phenomenon is associated with an increase in the brittle properties of the material due to the formation of crystallization-condensation bonds in the structure of asphalt concrete containing slag.


2015 ◽  
Vol 1124 ◽  
pp. 177-182
Author(s):  
Vit Cerný

Combustion of coal creates a high amount of by-products in heat power plants. The largest share occupies fly ash as solid mineral residuals. Global pressure grows currently for the use of energy by-products. Utilization as a raw material for production of artificial sintered aggregate is one of the ways to make optimal use of even low-quality fly ash. Environmental and economic reasons lead currently to trying to upgrade the technology, which will fully use of the principle of self-sintering process based on content of combustible substances.The amount of combustible substances is today increasing by coal as a primary and finite resource. There is also best way for utilization of industrial wastes that contain a suitable share of combustible substances for ensure the smooth running of sintering.The paper deals with laboratory verification of selected industrial wastes as a correction component in the sintered aggregate production technology. As an alternative raw materials were selected coal tailings, sludge from paper industry, sludge from waste water treatment plant and fly ash from municipal waste incineration plant. The aim of the study was to investigate the effect of corrective components to the quality of the resulting sintered aggregates.


2020 ◽  
Author(s):  
Kirill Yuryevich Tyuryukhanov ◽  
Konstantin Georgievich Pugin

There is an increase in motorization worldwide, which in turn requires the construction of high-quality roads and highways. In both new construction and reconstruction of the pavement, large volumes of natural mineral materials are used, placing a large technogenic load on environmental objects during their extraction. In a number of regions of the Russian Federation, there are not sufficient volumes of conditioned raw materials for the production of high-quality composite building materials, such as asphalt concrete and cement concrete mixtures. The use of industrial waste in the composition of building materials addresses this issue while both solving environmental issues and reducing the cost of road construction. This article shows that developed countries successfully use the resource potential of waste in the production of building materials. This article proposes the use of waste foundry sand as the mineral raw material in the production of asphalt concrete. The article presents research on the following: geometric shape, elemental composition of the surface of the particles of the waste foundry sand; bitumen capacity; and the adhesion of bitumen. Based on the obtained data, a technology was developed for producing hot sandy asphalt concrete in which the waste foundry sand is used as a fine mineral aggregate. Physico-mechanical properties of the obtained samples of asphalt concrete satisfy the requirements established in GOST for asphalt concrete. Keywords: waste foundry sand, asphalt concrete, industrial material, elemental composition, bitumen


2018 ◽  
Vol 196 ◽  
pp. 04010
Author(s):  
Aleksey Khlystov ◽  
Vladimir Shirokov ◽  
Elena Vlasova

The article provides information on industrial waste generation at enterprises of the Samara region, suitable for use as raw materials components of such heat-resistant composites as solutions, concretes, gun mixes, coatings. The research indicates rational ways of some heat-resistant binders application for utilization of mineral high-melting and heat-resistant industrial wastes. It proves that the enrichment of certain types of industrial waste, i.e. bringing the chemical composition of their components to the required state, allowed to expand the raw material base for the synthesis of heat-resistant binders and concrete in general. The use of sludge waste in the processes of synthesizing liquid phosphate binders allowed to obtain such effective binders as aluminophosphates and aluminocalciumphosphates. The research proves that application of technogenic wastes of non-ferrous metallurgy enterprises allows to receive heat-resistant materials solutions, concretes, coatings, gun mixes which characteristics are similar to their industrial analogues.


2018 ◽  
Vol 22 (5) ◽  
pp. 24-29
Author(s):  
V.Z. Abdrakhimov

It is shown that at present the current system of environmental regulation in Russia is divorced from the real context in which to exist. One of the most promising areas for the use of waste production is ─ involving them recycled as secondary material or energy resources. On the basis of waste oil shale obtained heat-insulating materials with high physical-mechanical indicators. Due to the involvement of industrial waste in manufacturing of heat-insulating materials may dramatically change the parameters of the raw material base of Russia, which also contributes to reducing environmental impact in the regions. The use of waste fuel and energy complex: inter-shale clay and slate slag in the production of insulating materials contributes to recycling of industrial waste, the protection of the environment and expansion of raw materials base for production of ceramic building materials. The compositions of the developed compositions, proposed to obtain a lightweight brick and a porous filler, the authors of this article obtained three patents of the Russian Federation. Utilization of industrial wastes contributes to the development of "green" economy.


2018 ◽  
Vol 251 ◽  
pp. 01028
Author(s):  
Alexey Ignatiev ◽  
Denis Gerasimov ◽  
Igor Golikov ◽  
Valeriy Gotovtsev

The paper presents the results of experimental studies to identify the possibility of using large-tonnage industrial mineral waste in the production of asphalt concrete mixtures. As a raw material for the production of asphalt used phosphogypsum - waste production of phosphoric acid, resulting from the processing of apatite. The reserves of this product are measured in millions of tons and are constantly replenished, stored in open dumps, representing a serious threat to the environmental situation in the surrounding areas. Phosphogypsum is a mineral powder material, the dispersion characteristics of which correspond to the mineral powder in the production of asphalt concrete. The method of production of granulated as-falto-concrete mixture developed by the authors of the article by the method of rolling involves the use of a significantly higher content of expensive mineral powder in comparison with typical mixtures. Therefore, the use of cheap phosphogypsum for these purposes is very attractive. However, the first attempts to obtain a granulated product based on phosphogypsum were unsuccessful - the asphalt-concrete mixture did not withstand the effects of moisture. Further studies allowed us to solve the problem of material resistance by modifying bitumen with polyethylene terephthalate, one of the most common household plastic waste. The subject of the article is devoted to the development of prescription and regime parameters of the process of obtaining new material. Test methods for asphalt concrete are strictly standardized in connection with which standard techniques were used. As a result of the research, an asphalt-concrete mixture was obtained, surpassing typical materials in many performance characteristics and allowing to solve a global environmental problem.


2021 ◽  
Vol 13 (8) ◽  
pp. 4119
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

The road construction sector is one of the most raw material-intensive sectors in existence. As a result, it has a significant impact on the environment. For this reason, there are several research projects in which industrial by-products are used as raw materials. In turn, energy production from biomass combustion is considered to be one of the most promising energy sources. However, this type of energy produces a number of wastes that need to be treated, such as biomass bottom ash. This research evaluates the properties of biomass bottom ash for use as a filler in bituminous mixtures and quantifies the environmental advantages of its use. For this purpose, the chemical composition of the ashes was analysed and their properties were physically characterised to confirm their suitability as a filler. Subsequently, the advantages of its processing compared to limestone filler, lime, or cement were calculated with SimaPro software. The results showed acceptable properties of biomass bottom ash for use as a filler, as well as a drastic reduction in the environmental impact of its processing. In short, this research presents the basis for the development of further bituminous mixtures with biomass bottom ash, reducing the extraction of raw materials and avoiding landfill disposal.


2021 ◽  
Vol 264 ◽  
pp. 02052
Author(s):  
Shuxrat Buriyev ◽  
Shoxrux Davranov ◽  
Yokub Kuchkarov ◽  
Iroda Saydakberova

In the article, work has been done to obtain shale mineral powder based on local raw materials and develop technologies to improve the physical and mechanical performance and durability of asphalt concrete, thereby increasing the physico-mechanical performance and durability of asphalt concrete, the density of fine-grained hot dense asphalt mix with shale mineral powder. The water absorption index of the asphalt concrete mixture decreases, the strength increases, and the transport performance of the road improves.


Foods ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 203 ◽  
Author(s):  
Friederike Gutöhrlein ◽  
Stephan Drusch ◽  
Sebastian Schalow

In order to evaluate by-products from food processing as alternative raw materials for pectin extraction, their amount of galacturonic acid (GalA) has to be analysed as a marker for pectin content. In the present study, significant differences in GalA release using different digestion methods are shown for pea hulls, as an example of by-products with a high content of cellulose. Complete digestion of the fibre matrix was assumed for Saeman hydrolysis as a reference protocol. Significantly lower GalA release was achieved by a treatment with trifluoracetic acid (TFA). An alternative treatment with ethylenediaminetetraacetic acid (EDTA) at pH 11 followed by an enzymatic digestion at pH 4.5 using a combination of polygalacturonase (Vegazyme M) and cellulase (Celluclast 1.5L) resulted in a similar release of GalA compared to Seaman hydolysis. Pea hull samples, analysed by this alternative protocol, showed on average a GalA content of 11.2%. Therefore, pea hulls may serve as new raw material for pectin extraction.


Sign in / Sign up

Export Citation Format

Share Document