scholarly journals Influence of Nano Silicon and Nano Selenium on Root Characters, Growth, Ion Selectivity, Yield, and Yield Components of Rice (Oryza sativa L.) under Salinity Conditions

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1657
Author(s):  
Shimaa A. Badawy ◽  
Bassiouni A. Zayed ◽  
Sherif M. A. Bassiouni ◽  
Ayman H. A. Mahdi ◽  
Ali Majrashi ◽  
...  

Rice production under salinity stress is a critical challenge facing many countries, particularly those in arid and semi-arid regions. This challenge could be handled by applying novel approaches to overcome yield limiting factors and improve resource use efficiency. The usage of nanoparticles (NPs) could be a beneficial approach to managing the growing problem of soil salinity. The aim of our study was to investigate the advantageous effects of soaking and foliar application of silicon (Si) and selenium (Se), (NPs-Si at 12.5 mg L−1 and NPs-Se at 6.25 mg L−1) on root characteristics, moropho-physiological traits, and yields of two rice varieties (i.e., Giza 177 as a salt sensitive and Giza 178 as a salt tolerant) grown in saline soil compared to untreated plants (control treatment). Results showed that soaking NPs-Se resulted in the highest value of root thickness for Giza 178 (0.90 mm, 0.95 mm) and root volume (153.30 cm3, 154.30 cm3), while Giza 177 recorded 0.83 mm, 0.81 mm for root thickness and 143.30 cm3, 141.30 cm3 for root volume in the 2018 and 2019 seasons, respectively. Soaking NPs-Se, NPs-Si and foliar application of NPs-Se at BT resulted in the highest relative water content and dry matter, while foliar application of NPs-Si at BT gave the highest leaf area index of rice plants compared to the other treatments. Giza 178 (i.e., salt tolerant variety) significantly surpassed Giza 177 (i.e., salt sensitive variety) in the main yield components such as panicle number and filled grains/ panicle, while Giza 177 significantly exceeded Giza 178 in the panicle weight, 1000-grain weight, and unfilled grains number/ panicle. Soaking NPs-Se and foliar application of NPs-Si at BT resulted in the highest grain yield of 5.41 and 5.34 t ha−1 during 2018 and 5.00 and 4.91 t ha−1 during 2019, respectively. The salt sensitive variety (Giza 177) had the highest Na+ leaf content and Na+/K+ ratio as well as the lowest K+ leaf content during both seasons. Applying nano nutrients such as NPs-Si and NPs-Se improved the yield components of the salt sensitive variety (Giza 177) by enhancing its ion selectivity. Both NPs-Si and NPs-Se had almost the same mode of action to mitigate the harmful salinity and enhance plant growth, and subsequently improved the grain yield. In summary, the application of NPs-Si and NPs-Se is recommended as a result of their positive influence on rice growth and yield as well as minimizing the negative effects of salt stress.

2019 ◽  
Vol 29 (4) ◽  
pp. 304-312
Author(s):  
B Chowdhury ◽  
MHK Howlader ◽  
MK Hossain ◽  
MC Sikder ◽  
MM Hasan

The present experiment was conducted at the research field of Patuakhali Science and Technology University (PSTU), Patuakhali during the period from December 2013 to March 2014 to evaluate the effect of Nitrobenzene as plant growth regulators on growth and yield parameters of Boro Rice. It also observed the comparative growth and yield performance of foliar application   Nitrobenzene ( 0, 1.0,  3.0 and 5.0 ml L–1). Data were collected on Plant height; number of leaves plant–1; number of total, effective and non–effective tillers hill–1; leaf area (LA); leaf area index (LAI); total dry matter (TDM); Crop and relative growth rate (CGR and RGR); and  Yield and yield contributing characters  such as length of root; length of panicle; number of total, sterile and non–sterile spikelets panicle–1; 1000–grain weight; grain, straw and biological yield and harvest index (HI). The experiment was laid out in a completely randomized block design (RCBD) with three replications. The collected data were analyzed statistically and means were adjudged by DMRT at 5% level of probability. The treatments Nitrobenzene @ 3.0 ml L–1 as foliar application gave the highest performance in respect of  plant height (90.39 cm), LAI (3.514), TDM (19.17 g plant–1), effective tiller (20.33 hill–1), total tillers (22.73 hill–1), panicle length (26.01 cm),non sterile spikelets (134.70 panicle–1), total spikelets (155.80 panicle–1), 1000–grain weight (28.21 g),  grain yield (5.86 t ha–1), straw yield (8.44 t ha–1), biological  yield (14.29 t ha–1) and HI (41.00%) of boro rice. Progressive Agriculture 29 (4): 304-312, 2018


2019 ◽  
Vol 50 (6) ◽  
Author(s):  
Al-Mohmadi & Al-Ani

A field experiment was condueted at the experimental Farm, College of Agriculture University of AL-Anbar in replace location (Abu-Gheaib) in spring season of 2017. While in Fall season it was applied at AL-saqluwiya-Anbar Province 10 km west north of Falluga city to study the effect of four levels of licorice extractor (Glycyrrhiza glabra L.) (0,2,4 and 6) g.L-1 water and three (53,333, 66,666 and 88,888 plant) plant.ha-1. On growth and grain yield of Sorghum cv. Rabih. The experiment was applied using R.C.B.D. arranged in split plots with three replications. levels of plant densities were used as main-plot, while licorice extractor were used as sub-plot. Foliar application of licorice extractor was applied during vegetative growth. The results showed that, high plant density (88888) plant.h-1 significantly increase plant height and leaf area index, while most of traits were not significantly influenced by plant density including grain yield. Results revealed that foliar application of licorice extractor with 2,4,6 g.L-1 of water significantly influenced grain yield in spring season compane with control treatment and it is amounted to (9.62, 9.55 and 9.78) t.h-1 respectively. There were significant interaction between Licorice extractor and plant density in spring and fall season in grain yield. The higher grain yield of 10.31 and 10.33 t.h-1 were obtained when sorghum plants were sowing at hight density and sprayed with Licorice extractor at level          4 g.L-1 respectively


2019 ◽  
Vol 11 (4) ◽  
pp. 823-829
Author(s):  
Ganpat Louhar

Wheat is one of the most important cereal crop and staple foods in the world. Increase in productivity of wheat by balance nutrient management is one of the most crucial factors. The main objective this study is to assessing the role of micronutrients in improving different components of wheat yield. There are different methods of application such as seed priming, soil application and fortification but foliar application is more beneficial. This is due to response of foliar application has positive and quadrate in nature i.e. the optimum dose of foliar application of zinc for grain yield of wheat was observed as 0.04%. Among treatments of micronutrient alone or combined forms give better results over control. Results have show that micronutrient application substantially improved leaf area index (LAI), leaf area duration, CGR (Crop growth rate), RGR (Relative growth rate), NAR (Net assimilation rate), plant height, spike length, spikelets/spike, grains/spike, test weight, tillers m-2, grain yield, chlorophyll content and biological yield as well as harvest index of wheat. The yield and quality of wheat products improved and boosted by micronutrient applications. Therefore, human and animal health will be protected with the feed of enriched and balanced nutrition of produce as well as it will help in facing the severe global food security.


Author(s):  
Ejaz Ahmad Khan ◽  
Iqtidar Hussain ◽  
Sheryar . ◽  
Hafiz Bashir Ahmad ◽  
Iqbal Hussain

Although,chickpea isnitrogen fixing crop but water scarcity under rain-fed condition reduces its nodulation process severely and nutrients use efficiency too. An experiment was carried out regarding the combined effect of nipping as well as foliar applied fertilizers on yield and yield components of chickpea under rain-fed conditions. Nipping and foliar application of nutrients significantly improved number of pods plant-1, biological yield (kg ha-1), harvest index (%) and final grain yield (kg ha-1). However, non-significant influence was seen in 1000-grain weight and number of grains pod-1. Foliar application of N PK (20:20:20) @2.5 kg ha-1 × nipping was found to be the best interaction among others which significantly increased number of branches plant-1 (11.30), number of pods plant-1(115.36), plant height(59.48cm) and grain yield(2338.9 kg ha-1) as compared to the control treatment. Nipping along with foliar application of NPKcan be practiced in chickpea for higher profitability.


2020 ◽  
Vol 34 (5) ◽  
pp. 666-674 ◽  
Author(s):  
Elizabeth Karn ◽  
Teresa De Leon ◽  
Luis Espino ◽  
Kassim Al-Khatib ◽  
Whitney Brim-DeForest

AbstractWeedy rice is an emerging problem of cultivated rice in California. Infestations of weedy rice in cultivated rice result in yield loss and reduced grain quality. In this study, we aimed to evaluate growth and yield components of a widely grown cultivated rice variety in California in response to weedy rice competition. Greenhouse competition experiments in an additive design were conducted in 2017 and 2018 to determine the growth and yield components of ‘M-206’ rice and five weedy rice biotypes found in California at varying weed densities. M-206 rice initially grew at a faster relative growth rate of 0.53 cm−1 wk−1 under competitive conditions compared with 0.47 cm−1 wk−1 in the absence of weedy rice, but absolute and relative growth rates declined more rapidly under competitive conditions as plants approached maturity. At harvest, M-206 plant height was reduced 13% under competitive conditions, and M-206 tiller number was reduced 23% to 49%, depending on the weedy rice biotype it was competing with. Except for 100-grain weight, the growth traits and grain yield components of M-206 rice were reduced with increasing density of weedy rice. At the highest weed density measured, 40 plants m−2, M-206 rice had yield losses of 69% grain yield plant−1, 69% panicle weight, 59% fresh and dry biomass, 55% grain yield panicle−1, and 54% panicle number. The five evaluated weedy rice biotypes varied widely in early growth rates, height, biomass production, and grain yield, indicating differing competitive strategies. Most weedy rice biotypes produce plants with greater plant height, tiller number, panicle number, and above- and below-ground biomass compared with cultivated rice. Weedy rice biotypes produced 45% to 57% higher grain yield per plant than M-206 rice under competitive conditions.


1986 ◽  
Vol 106 (1) ◽  
pp. 37-40
Author(s):  
H. S. Grewal ◽  
H. S. Gill

SUMMARYField experiments were carried out at Ludhiana in Punjab during 1982 and 1983 on the effect of foliar application of water spray or naphthalene acetic acid (NAA) at 100 and 200 mg/1 of water on the growth and yield of rice when applied at tillering and before panicle emergence stages of late-transplanted paddy grown under four levels of nitrogen (0, 60, 90 and 120 kg/ha). Foliar spray of NAA significantly increased the grain yield of paddy as compared with water spray under low levels of nitrogen (0 and 60 kg/ha) owing to increases in the number of ear-bearing shoots per plant, number of filled grains per panicle and grain weight. Chlorophyll content of leaves, leaf area index and interception of photosynthetically active radiation by the crop canopy also increased with foliar spray of NAA and application of nitrogen. Paddy responded significantly up to 90 kg N/ha in terms of grain yield whereas straw yield increased significantly up to 120 kg N/ha. However, grain mass declined significantly with increase in nitrogen from 90 to 120 kg/ha.


2019 ◽  
Vol 2 (2) ◽  
pp. 357-369
Author(s):  
Nguyen Thi Loan ◽  
Nguyen Ngoc Hung

To study the effects of organic fertilizer and HB101 organic plant vitalizer on the growth and yield components of the BH9 rice variety, a field experiment with 4 x 3 factorial design was conducted at Hong Thai commune, Kien Xuong district, Thai Binh province in 2017 summer season using a randomized complete block design with 3 replications. Organic fertilizer derived from chicken manure and peat was applied at 3 levels (0 ton ha-1, 4 tons ha-1, and 6 tons ha-1) while the HB101 plant vitalizer was sprayed in 4 levels (0%, 0.015%, 0.025%, and 0.035%; the amount of water to dilute HB101 was 1000 litre ha-1). The application of the organic fertilizer alone and the combination of organic fertilizer and HB101 positively increased the total tiller number, effective tiller number, leaf area index (LAI), SPAD value, dry matter accumulation, yield components, and grain yield of rice. There were also differences in the SPAD values (at flowering stage), dry matter weight (at active tillering stage), and 1000 grain weight under the influence of the HB101 solution. The combination of 6 tons ha-1 organic fertilizer and  HB101 significantly increased the grain yield as compared to the other treatments, and the highest grain yield (3.03 tons ha-1) was obtained when  organic fertilizer (6 tons ha-1) was applied in combination with HB101 plant vitalizer (0.025%).


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11668
Author(s):  
Ke Wu ◽  
Izhar Ali ◽  
Huimin Xie ◽  
Saif Ullah ◽  
Anas Iqbal ◽  
...  

The current farming system in China is heavily reliant on synthetic fertilizers, which adversely affect soil quality and crop production. Therefore, the aim of this study was to assess the effect of different nitrogen (N) and phosphorous (P) fertilizer application rate on the growth, yield, and yield components of rice cultivars in the Binyang, Beiliu and Liucheng sites of southern China in the early (March to July) and late season (August to December). The study consisted of three fertilization regimes—CK (N0P0); N180P90 (180 kg N + 90 kg P2O5 ha−1) and N90P45 (90 kg N ha−1 + 45 kg P2O5)—conducted at each of three different experimental sites with four cultivars (Baixang 139, Y Liangyou 1, Guiyu 9, and Teyou 582). Results showed that the leaf area index (LAI) was 38.8% found higher in Guiyu 9 compared with Baxiang at reduced fertilization (N90P45). N90P45 resulted higher dry matter production at the heading (9411.2 kg ha−1) and maturity (15319.5 kg ha−1) stages in Teyou 582 at Beiliu. Fertilization (N180P90) had higher effective panicle number (4,158,800 panicle ha−1) and grains panicle−1 (113.84 grains) compared with other treatments. Teyou 582 treated with N90P45 and Y Liangyou 1 treated with N180P90 improved seed setting rate average by 82.91% and 72.17% compared with other treatments at Beiliu in both seasons, respectively. N0P0 and N90P45 increased the thousand-grain weight (TGW) of Y Liangyou 1 at Binyang (27.07 g) and Liucheng (27.84 g) during the early and late seasons, respectively. In Beiliu, the N90P45 treatment (6611.7 kg ha−1) of Teyou 582 increased grain yield compared with other treatments. Overall, our results suggested that reducing N and P at the ratio of 90:45 kg ha−1 in Teyou 582 and Y Liangyou 1 could increase rice grain yield and yield components.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


Sign in / Sign up

Export Citation Format

Share Document